基础数论算法(六) 素数的筛法与质因数分解

本文介绍了素数筛法,包括Eratosthenes筛法和线性筛(欧拉筛),详细阐述了两种筛法的复杂度和实现方式,并探讨了质因数分解的方法,如试除法和Pollard算法。对于数据规模较大的情况,线性筛在效率上更优,而Pollard算法虽然较复杂,但在随机化算法中具有重要地位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

素数筛法

如果我们需要多次判断是不是素数时,比起无数次的枚举、测试,还是提前筛出一张素数表比较好


Eratosthenes筛法

一般情况下够用的筛法。复杂度nlnlnn,关键是不容易写错。还有别问我这个复杂度怎么算出来的。实现非常简单。

#include <iostream>
#include <cstring>
using namespace std;
#define MAXN 1000001
int main(){
    bool notprime[MAXN];
    memset(notprime,0,sizeof(notprime)); 
    notprime[1]=1;
    for(int a=2;a<MAXN;a+=(a==2?1:2))
        if(!notprime[a])  //如果不加的话复杂度nlnn 
            
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值