BUY LOW, BUT LOWER

本文探讨了股票投资中的‘逢低吸纳’策略,详细解释了如何在股价下降时买入股票以期获得利润,并提供了求解最多购买次数的算法。通过分析股价序列,找出连续降价的最长子序列,进而计算出购买股票的最大可能性。

“逢低吸纳”是炒股的一条成功秘诀。如果你想成为一个成功的投资者,就要遵守这条秘诀:

"逢低吸纳,越低越买"

这句话的意思是:每次你购买股票时的股价一定要比你上次购买时的股价低.按照这个规则购买股票的次数越多越好,看看你最多能按这个规则买几次。

给定连续的N天中每天的股价。你可以在任何一天购买一次股票,但是购买时的股价一定要比你上次购买时的股价低。写一个程序,求出最多能买几次股票。

以下面这个表为例, 某几天的股价是:

天数 1 2 3 4 5 6 7 8 9 10 11 12
股价 68 69 54 64 68 64 70 67 78 62 98 87

这个例子中, 聪明的投资者(按上面的定义),如果每次买股票时的股价都比上一次买时低,那么他最多能买4次股票。一种买法如下(可能有其他的买法):

天数 2 5 6 10
股价 69 68 64 62

格式
PROGRAM NAME: buylow
INPUT FORMAT:(file buylow.in)

第1行: N (1 <= N <= 5000), 表示能买股票的天数。

第2行以下: N个正整数 (可能分多行) ,第i个正整数表示第i天的股价. 这些正整数大小不会超过longint(pascal)/long(c++).

OUTPUT FORMAT:(file buylow.out)

只有一行,输出两个整数:

能够买进股票的天数 长度达到这个值的股票购买方案数量

在计算解的数量的时候,如果两个解所组成的字符串相同,那么这样的两个解被认为是相同的(只能算做一个解)。因此,两个不同的购买方案可能产生同一个字符串,这样只能计算一次。

SAMPLE INPUT
12
68 69 54 64 68 64 70 67
78 62 98 87

SAMPLE OUTPUT
4 2


所以,必须进行求最长的降序序列长度  和  该长度不同的排列种数

首先利用前一种情况推后一种情况求最长序列长度, dp[j] =  max(  dp[j] + 1  ,   dp[i]  )  ( j < i ),且dp[ j ]确定,

即第一层循环必须  i = 0 ----> n。

求排列种数:   因为是由前一种情况确定后一种情况,所以长度达到 dp[ j ]的排列种数是确定的,

                        且若dp[ j ] + 1 > dp[ i ] ,则dp[ i ] = dp[ j ] +1.即 dp [ i ] 由dp[ i ]到目前为止,

                        只有通过price [ j ]才能达到dp[ i ] , 所以此时的排列长度增加了,但是排列种数并没有变化。

                        若dp[j] + 1 == dp[i] ,则此时dp[ i ] - 1 长度的排列增加了count[j]种,则count[ i ] += count[ j ].


#include<iostream>
#include<string.h>
#define size 5010
using namespace std;
int main()
{
    int n;
    int opt[size],price[size],count[size];
    int vis[size];
    int max,ans;
    while(scanf("%d",&n)!=EOF)
    {
       memset(opt,0,sizeof(opt)); 
       memset(vis,0,sizeof(vis));
       ans=max=0;
       for(int i=0;i<n;i++) {scanf("%d",&price[i]); count[i]=1;}
       for(int i=0;i<n;i++)
       {
          // for(int j=0;j<i;j++)
           for(int j=i-1;j>=0;j--) //-------注释① 两个不同循环的区别 
           {  
/*
   opt[j大] < opt[j小],但count[j大]覆盖了count[j小]
   如果是第一个循环,下面标记①处,会重复计算 
*/ 
               if(price[j]>price[i] && !vis[j])
               {
                   if(opt[j]+1>opt[i] ) opt[i]=opt[j]+1 , count[i]=count[j]; 
                   else if(opt[j]+1==opt[i]) // -------① opt[i]改变 
                   count[i]+=count[j];  
               } 
               if(price[j]==price[i]) //------注释②
/*
  下面if(!opt[i])判断,是指price[i]=price[j]情况下(j<i),若price[j~i-1]中没有使opt[i]>opt[j]
  的情况,则说明0~i与0~j的情况是相同的,即重复的,所以可以标记vis[i]=1,避免重复。 
*/               
               {
                    if(!opt[i])  vis[i]=1; 
                    break;
               }
           } 
           if(opt[i]>max) max=opt[i]; 
       }
       //for(int i=0;i<n;i++) cout<<count[i]<<" ";cout<<endl;
       max++;
       for(int i=0;i<n;i++) 
       if(opt[i]+1==max)  ans+=count[i];
       printf("%d %d\n",max,ans);
    }
    return 0;
}



//@version=6 indicator(“Enhanced RSI [AI Optimized]”, shorttitle=“ERSI Pro”, overlay=false, precision=2) // 参数设置(版本6标准化输入) period = input.int(14, title=“基础周期”, minval=1) emaPeriod = input.int(50, title=“EMA平滑周期”, minval=1) overbought = input.int(65, title=“超买阈值基准”, minval=50, maxval=90) oversold = input.int(35, title=“超卖阈值基准”, minval=10, maxval=50) power = input.float(0.8, title=“非线性压缩指数”, step=0.1, minval=0.1, maxval=2.0) useDynamicBands = input.bool(true, title=“启用动态阈值”) // 计算真实波动范围(ATR) - 版本6兼容函数 calcATR(src, len) => tr = math.max(high - low, math.max(math.abs(high - src[1]), math.abs(low - src[1]))) ta.ema(tr, len) // 核心计算逻辑(版本6要求显式类型声明) var float ersi = na var float upperBand = na var float lowerBand = na // ATR波动率因子 atr = calcATR(close, period) atrEMA = ta.ema(atr, emaPeriod) volatilityFactor = atr / math.max(atrEMA, 0.0001) // 调整后的价格变化 delta = close - close[1] adjustedDelta = delta / math.sqrt(math.max(volatilityFactor, 0.1)) // 动态平滑系数(修复类型转换问题) dynamicPeriod = int(period * (1 + volatilityFactor / 3)) alpha = 2.0 / (dynamicPeriod + 1.0) // 计算方向强度(修复EMA长度参数类型) posDelta = math.max(adjustedDelta, 0) negDelta = math.max(-adjustedDelta, 0) // 修复点:将动态参数转换为静态长度 avgGain = ta.ema(posDelta, dynamicPeriod) avgLoss = ta.ema(negDelta, dynamicPeriod) // 非线性压缩处理 rs = math.max(avgGain / math.max(avgLoss, 0.0001), 0.0001) compressedRS = math.pow(rs, power) ersi := 100 - 100 / (1 + compressedRS) // 动态阈值调整 volatilityAdj = 5 * (atr / math.max(ta.sma(atr, 50), 0.0001) - 1) upperBand := useDynamicBands ? (overbought + volatilityAdj) : overbought lowerBand := useDynamicBands ? (oversold - volatilityAdj) : oversold // 绘图模块 plot(ersi, “ERSI”, color=#2962FF, linewidth=2) hline(50, “Midline”, color=color.gray, linestyle=hline.style_dotted) band1 = plot(upperBand, “Upper Band”, color=#FF6D00, style=plot.style_circles) band2 = plot(lowerBand, “Lower Band”, color=#00C853, style=plot.style_circles) fill(band1, band2, color=color.new(#2962FF, 90), title=“Dynamic Band”) // 信号生成 longCondition = ta.crossover(ersi, lowerBand) shortCondition = ta.crossunder(ersi, upperBand) plotshape(longCondition, title=“Buy Signal”, style=shape.triangleup, location=location.belowbar, color=#00C853, size=size.small) plotshape(shortCondition, title=“Sell Signal”, style=shape.triangledown, location=location.abovebar, color=#FF5252, size=size.small) // 策略模块 if (longCondition) strategy.entry(“Long”, strategy.long) else if (shortCondition) strategy.entry(“Short”, strategy.short) // 止盈止损逻辑 strategy.exit(“Exit Long”, from_entry=“Long”, profit=close0.01, loss=close0.005) strategy.exit(“Exit Short”, from_entry=“Short”, profit=close0.008, loss=close0.004) 错误avgGain = ta.ema(posDelta, dynamicPeriod):Cannot call “ta.ema” with argument “length”=“dynamicPeriod”. An argument of “series int” type was used but a “simple int” is expected. 请给出修正错误后的完整代码,不进行其他优化
最新发布
03-13
//@version=6 indicator("Enhanced RSI [AI Optimized]", shorttitle="ERSI Pro", overlay=false, precision=2) // 参数设置(版本6标准化输入) period = input.int(14, title="基础周期", minval=1) emaPeriod = input.int(50, title="EMA平滑周期", minval=1) overbought = input.int(65, title="超买阈值基准", minval=50, maxval=90) oversold = input.int(35, title="超卖阈值基准", minval=10, maxval=50) power = input.float(0.8, title="非线性压缩指数", step=0.1, minval=0.1, maxval=2.0) useDynamicBands = input.bool(true, title="启用动态阈值") // 计算真实波动范围(ATR) - 版本6兼容函数 calcATR(src, len) => tr = math.max(high - low, math.max(math.abs(high - src[1]), math.abs(low - src[1]))) ta.ema(tr, len) // 核心计算逻辑(版本6要求显式类型声明) var float ersi = na var float upperBand = na var float lowerBand = na // ATR波动率因子 atr = calcATR(close, period) atrEMA = ta.ema(atr, emaPeriod) volatilityFactor = atr / math.max(atrEMA, 0.0001) // 调整后的价格变化 delta = close - close[1] adjustedDelta = delta / math.sqrt(math.max(volatilityFactor, 0.1)) // 动态平滑系数(修复类型转换问题) dynamicPeriod = int(period * (1 + volatilityFactor / 3)) alpha = 2.0 / (dynamicPeriod + 1.0) // 计算方向强度(修复EMA长度参数类型) posDelta = math.max(adjustedDelta, 0) negDelta = math.max(-adjustedDelta, 0) // 修复点:将动态参数转换为静态长度 avgGain = ta.ema(posDelta, dynamicPeriod) avgLoss = ta.ema(negDelta, dynamicPeriod) // 非线性压缩处理 rs = math.max(avgGain / math.max(avgLoss, 0.0001), 0.0001) compressedRS = math.pow(rs, power) ersi := 100 - 100 / (1 + compressedRS) // 动态阈值调整 volatilityAdj = 5 * (atr / math.max(ta.sma(atr, 50), 0.0001) - 1) upperBand := useDynamicBands ? (overbought + volatilityAdj) : overbought lowerBand := useDynamicBands ? (oversold - volatilityAdj) : oversold // 绘图模块 plot(ersi, "ERSI", color=#2962FF, linewidth=2) hline(50, "Midline", color=color.gray, linestyle=hline.style_dotted) band1 = plot(upperBand, "Upper Band", color=#FF6D00, style=plot.style_circles) band2 = plot(lowerBand, "Lower Band", color=#00C853, style=plot.style_circles) fill(band1, band2, color=color.new(#2962FF, 90), title="Dynamic Band") // 信号生成 longCondition = ta.crossover(ersi, lowerBand) shortCondition = ta.crossunder(ersi, upperBand) plotshape(longCondition, title="Buy Signal", style=shape.triangleup, location=location.belowbar, color=#00C853, size=size.small) plotshape(shortCondition, title="Sell Signal", style=shape.triangledown, location=location.abovebar, color=#FF5252, size=size.small) // 策略模块 if (longCondition) strategy.entry("Long", strategy.long) else if (shortCondition) strategy.entry("Short", strategy.short) // 止盈止损逻辑 strategy.exit("Exit Long", from_entry="Long", profit=close*0.01, loss=close*0.005) strategy.exit("Exit Short", from_entry="Short", profit=close*0.008, loss=close*0.004) 错误avgGain = ta.ema(posDelta, dynamicPeriod):Cannot call "ta.ema" with argument "length"="dynamicPeriod". An argument of "series int" type was used but a "simple int" is expected.
03-13
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值