[COCI2008-2009#5] TRESNJA 解题记录

[COCI2008-2009#5] TRESNJA 解题记录


题意简述

每颗樱桃树都有一个编号,定义一颗樱桃树上的樱桃数量为所有连续的数字乘以长度的平方的和。
现给定区间 [ a , b ] [a,b] [a,b],求这个区间内的樱桃数量。


题目分析

看到这种数据范围自然而然地就会想到数位 DP。
不妨设 d p s t e p , l a s t , c n t , s u m dp_{step,last,cnt,sum} dpstep,last,cnt,sum 表示当前填到第 s t e p step step 位,上一位数字是 l a s t last last,当前连续数字的个数是 c n t cnt cnt,当前编号的樱桃数量是 s u m sum sum
对于枚举的每一位,考虑填 0 ∼ l i m i t 0 \sim limit 0limit,其中 l i m i t limit limit 为当前为的上界。更新的时候如果当前选的数字等于 l a s t last last,那么 c n t + 1 cnt+1 cnt+1 a n s ans ans 不变,否则更新 a n s = a n s + l a s t × c n t 2 ans=ans+last \times cnt^2 ans=ans+last×cnt2。使用记忆化搜索。
注意:如果你 #define int long long 一定要注意空间限制


AC Code
#include<bits/stdc++.h>
#define arrout(a,n) rep(i,1,n)std::cout<<a[i]<<" "
#define arrin(a,n) rep(i,1,n)std::cin>>a[i]
#define rep(i,x,n) for(int i=x;i<=n;i++)
#define dep(i,x,n) for(int i=x;i>=n;i--)
#define erg(i,x) for(int i=head[x];i;i=e[i].nex)
#define dbg(x) std::cout<<#x<<":"<<x<<" "
#define mem(a,x) memset(a,x,sizeof a)
#define all(x) x.begin(),x.end()
#define arrall(a,n) a+1,a+1+n
#define PII std::pair<int,int>
#define m_p std::make_pair
#define u_b upper_bound
#define l_b lower_bound
#define p_b push_back
#define CD const double
#define CI const int
#define int long long
#define il inline
#define ss second
#define ff first
#define itn int
CI N=16;//卡空间
int a,b,num[N],dp[N][N][N][2005];
int dfs(int step,int last,int cnt,int sum,int limit) {
    if(step>num[0]) {
        return sum+last*cnt*cnt;
    }
    if(!limit&&dp[step][last][cnt][sum]!=-1) {
        return dp[step][last][cnt][sum];
    }
    int up=limit?num[num[0]-step+1]:9;
    int s=0;
    rep(i,0,up) {
        s+=dfs(step+1,i,i==last?cnt+1:1,i==last?sum:sum+cnt*cnt*last,limit&&i==up);
    }
    if(!limit) {
        dp[step][last][cnt][sum]=s;
    }
    return s;
}
int solve(int x) {
    num[0]=0;
    while(x) {
        num[++num[0]]=x%10;
        x/=10;
    }
    mem(dp,-1);
    return dfs(1,-1,0,0,1);
}
signed main() {
    std::cin>>a>>b;
    std::cout<<solve(b)-solve(a-1);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值