重复测量的方差分析

重复测量方差分析用于处理因变量在多个时间点或条件下的相关数据,以避免增加I类错误概率。分析涉及五个假设,包括因变量的连续性、受试者内因素的水平、正态分布和方差协方差矩阵相等。当满足球形假设时,可进行一元方差分析,否则应用多元方差分析。方差分析后,可以选择不同的两两比较方法,如LSD法、Bonferroni法、Dunnett法、Tukey法或Scheffe法,具体取决于研究目的和样本特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重复测量的意义:由于重复测量时,每个个体的测量结果之间存在一定程度的相关,违背了方差分析数据独立性的要求,如果仍使用一般的方差分析,将会增加犯I类错误的概率,所以重复测量资料有相对应的方差分析方法。

重复测量方差分析要求:(需要考虑5个假设。)

假设1:因变量唯一,且为连续变量;

假设2:有两个受试者内因素(Within-Subject Factor),每个受试者内因素有2个或以上的水平。(注:在重复测量的方差分析模型中,对同一个体相同变量的不同次观测结果被视为一组,用于区分重复测量次数的变量被称为受试者内因素,受试者内因素实际上是自变量。)

假设3:受试者内因素的各个水平,因变量没有极端异常值;

假设4:受试者内因素的各个水平,因变量需服从近似正态分布ÿ

### 如何在 Python 中进行重复测量方差分析 对于希望执行重复测量方差分析的研究者而言,在 Python 生态系统中有多种库可供选择。`pingouin` 是一个专注于提供易于使用的统计测试函数的库,非常适合处理此类问题[^3]。 #### 使用 `pingouin` 进行重复测量方差分析 安装所需库可以通过 pip 完成: ```bash pip install pingouin pandas numpy statsmodels seaborn matplotlib scipy ``` 下面是一个简单的例子展示如何利用 `pingouin` 来完成重复测量 ANOVA 的操作: ```python import numpy as np import pandas as pd from pingouin import rm_anova, read_dataset # 加载内置的数据集作为示例 data = read_dataset('rm_anova') print(data.head()) # 执行单因素重复测量方差分析 result_single_factor = rm_anova(dv='DesireToKill', within='Disgustingness', subject='Subject', data=data) print(result_single_factor[['Source', 'ddof1', 'ddof2', 'F', 'p-unc']]) # 对于多因素情况下的重复测量设计 multi_data = read_dataset('mixed_anova') result_multi_factors = rm_anova(dv='Scores', within=['Time', 'Metric'], subject='Student', data=multi_data, detailed=True) print(result_multi_factors[['Source', 'ddof1', 'ddof2', 'F', 'np2', 'eps', 'p-unc']]) ``` 上述代码片段展示了加载数据并调用 `pingouin.rm_anova()` 函数来进行一维或多维度上的重复测量方差分析的过程。该函数返回的结果包含了源(Source),分子自由度(ddof1),分母自由度(ddof2),F 值(F),未调整 p 值(p-unc)等重要信息。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值