CUDA实现FFT并行计算

本文详细介绍了如何使用CUDA实现FFT的并行计算,从DFT到FFT的原理,蝴蝶操作的并行化,以及CUDA C++的具体实现。通过复数的C++实现、分治法的并行处理和二进制逆转操作解决合并问题,最终实现FFT的时间复杂度为O(nlog2n)的高效计算。
摘要由CSDN通过智能技术生成

前言

  本文是个人学习心得的分享,希望大家在阅读文章后能在评论中一起学习交流!另外还可以访问我的HelloCUDA仓库查看我在学习CUDA中写的一些demo程序。

内容概要

  • 复数的CUDA C++实现
  • 从DFT到FFT
  • FFT蝴蝶操作
  • CUDA中的分治
  • FFT的并行化

前置知识

从DFT到FFT

  离散傅里叶变化(Discrete Fourier Transform)是傅里叶变换的简化版本,计算机科学家发明出离散傅里叶变换目的就是要让具有连续性质的傅里叶变换能在具有离散性质的计算机中被应用。而离散傅里叶变换算法时间复杂度高( O ( n 2 ) O(n^2) O(n2)),使其在大规模场景中的应用受到限制,从而诞生了快速傅里叶变换(Fast Fourier Transform).
  快速傅里叶变换的实现采用的是分治的思想。利用DFT的数学性质可以将一个DFT分解为多个DFT。数列 a 0 , a 1 , a 2 , . . . , a n a_0, a_1, a_2, ..., a_n a0,a1,a2,...,an的离散傅里叶变换的本质是求多项式 A ( x ) = a 0 + a 1 x + a 2 x 2 + . . . + a n x n − 1 A(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^{n-1} A(x)=a0+a1x+a2x2+...+anxn1 n n n次单位复根处的取值,变换后的数列为 A ( w n 0 ) , A ( w n 1 ) , A ( w n 2 ) , . . . , A ( w n n − 1 ) A(w_n^0), A(w_n^1), A(w_n^2), ..., A(w_n^{n-1}) A(wn0),A(wn1),A(wn2),...,A(wnn1)。其中 w n i , i = 0 , 1 , . . . , n − 1 w_n^i, i=0, 1, ..., n-1 wni,i=0,1,...,n1是方程 w n = 1 w^n = 1 wn=1 n n n个根 (此处有疑惑请参考离散傅里叶变换的原理). 因此,对于长度为 n n n的数列进行DFT共需要进行 n n n次多项式求值,每次求值的复杂度为 O ( n ) O(n) O(n),因此总体时间复杂度为 O ( n 2 ) O(n^2) O(n2).
  了解从DFT到FFT原理的读者可以跳过以下三段内容。将上述多项式 A ( x ) A(x) A(x)按照下标为奇数或偶数分解为两个多项式 A 0 ( x ) = a 0 + a 2 x + a 4 x 2 + a 6 x 4 + . . . A_0(x)=a_0 + a_2x + a_4x^2 + a_6x^4 + ... A0(x)=a0+a

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值