数据结构实验之图论一:基于邻接矩阵的广度优先搜索遍历
Time Limit: 1000MS Memory Limit: 65536KB
Problem Description
给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列。(同一个结点的同层邻接点,节点编号小的优先遍历)
Input
输入第一行为整数n(0< n <100),表示数据的组数。
对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。
下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
Output
输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示BFS的遍历结果。
Example Input
1 6 7 0 0 3 0 4 1 4 1 5 2 3 2 4 3 5
Example Output
0 3 4 2 5 1
Hint
以邻接矩阵作为存储结构。
#include <bits/stdc++.h>
using namespace std;
int gra[105][105]; //建立邻接矩阵存储图
int que[200]; //数组模拟队列
int in = 0, out = 0; //队列头尾
int k, m, n;
bool visit[105]; //标记节点是否被访问
void BFS(int n){
in = 0, out = 0;
que[in++] = n; //出世界点入队列
while(in>out){ //队列不为空
int now = que[out]; //出队列判断是否为邻接点
out++;
for(int i=0; i<k; i++){ //循环判断邻接点
if(!visit[i]&&gra[now][i]==1){
visit[i] = true; //访问过后标记
que[in++] = i; //入队列
cout<<" "<<i; //输出
}
}
}
}
int main()
{
int t;
int u, v;
cin>>t;
while(t--){
memset(visit, false, sizeof(visit)); //初始化
memset(gra, 0, sizeof(gra));
cin>>k>>m>>n;
while(m--){
cin>>u>>v;
gra[u][v] = gra[v][u] = 1; //根据输入建立邻接矩阵
}
cout<<n;
visit[n] = true; //起始节点标记
BFS(n);
cout<<endl;
}
return 0;
}