基于Zookeeper集群环境下的负载均衡

转载请说明出处:https://blog.csdn.net/LiaoHongHB/article/details/84973879

1、原理

  • 服务端启动创建临时节点(下图中servers下节点),临时节点数据包含负载信息
  • 客户端启动获取服务器列表,并根据负载去连接一个负载较轻的服务器
  • 服务端每次接收到客户端的连接,添加自己的负载,客户端断开与自己的连接则减少自己的负载

2、架构图

  • Servers:服务器列表父节点
  • work Server n :服务器节点
  • Client n:客户端节点

3、客户端流程图

 

 

4、服务端流程图

5、新建工程zookeeper-balance,并新建子模块:balance-server1, balance-server2,balance-server2,balance-client,balance-client2,balance-client3以及balance-common。

6、balance-common:通用模块,只有一个ServerData类,用于存储各个工作服务器节点的数据信息

public class ServerData implements Serializable {

    private static final long serialVersionUID = 2965518573348700597L;
    private String serverName;
    private String serverIp;
    private Integer balanceNum;

    public String getServerName() {
        return serverName;
    }

    public void setServerName(String serverName) {
        this.serverName = serverName;
    }

    public String getServerIp() {
        return serverIp;
    }

    public void setServerIp(String serverIp) {
        this.serverIp = serverIp;
    }

    public Integer getBalanceNum() {
        return balanceNum;
    }

    public void setBalanceNum(Integer balanceNum) {
        this.balanceNum = balanceNum;
    }
}

7、balance-server1:工作服务器,服务注册到zookeeper集群中,并且监听自己节点的负载数的数据变化;balance-server2和balance-server3同balance-server1.

WorkServer:功能实现类:

public class WorkServer {

    private Logger logger = LoggerFactory.getLogger(getClass());

    private ZkClient zkClient = null;
    private String serverPath;
    private int SESSIONTIMEOUT = 15000;
    private int CONNECTIONTIMEOUT = 15000;
    private ServerData serverData;

    public WorkServer() {
    }

    public WorkServer(String ipAddress, String serverPath, ServerData serverData) {
        this.zkClient = new ZkClient(ipAddress, SESSIONTIMEOUT, CONNECTIONTIMEOUT, new SerializableSerializer());
        this.serverPath = serverPath;
        this.serverData = serverData;
    }

    public void start() {
        logger.info("balance-server1启动,准备初始化....");
        init();
    }

    public void init() {
        logger.info("balance-server1 开始初始化....");
        boolean exists = zkClient.exists(serverPath);
        if (!exists) {
            zkClient.createPersistent(serverPath);
            logger.info("创建{}持久节点成功", serverPath);
        }
        boolean exists1 = zkClient.exists(serverPath.concat(serverData.getServerName()));
        if (!exists1) {
            zkClient.createEphemeral(serverPath.concat(serverData.getServerName()), serverData);
            logger.info("创建{}临时节点成功", serverPath.concat(serverData.getServerName()));
        }
        zkClient.subscribeDataChanges(serverPath.concat(serverData.getServerName()), new IZkDataListener() {
            @Override
            public void handleDataChange(String s, Object o) throws Exception {
                logger.info("节点{}数据发生改变...", s);
            }

            @Override
            public void handleDataDeleted(String s) throws Exception {
                logger.info("节点{}被删除.....", s);
            }
        });
    }
}

WebListener:启动类;

@Component
public class WebListener implements ServletContextListener {

    private Logger logger = LoggerFactory.getLogger(getClass());
    private String ipAddress = "192.168.202.128:2181,192.168.202.129:2181,192.168.202.130:2181";


    @Override
    public void contextInitialized(ServletContextEvent sce) {
        ServerData serverData = new ServerData();
        serverData.setBalanceNum(0);
        serverData.setServerIp("192.168.202.128");
        serverData.setServerName("/WorkServer1");
        WorkServer workServer = new WorkServer(ipAddress, "/servers", serverData);
        workServer.start();
    }

    @Override
    public void contextDestroyed(ServletContextEvent sce) {

    }
}

 

8、balance-client1:客户端,负载均衡的访问工作服务器,balance-client2和balance-client3同balance-client1。

Client1:功能实现类;

public class Client1 {

    private Logger logger = LoggerFactory.getLogger(getClass());

    private ZkClient zkClient = null;
    private String serverPath;
    private int SESSIONTIMEOUT = 15000;
    private int CONNECTIONTIMEOUT = 15000;

    public Client1() {
    }

    public Client1(String ipAddress, String serverPath) {
        this.zkClient = new ZkClient(ipAddress, SESSIONTIMEOUT, CONNECTIONTIMEOUT, new SerializableSerializer());
        this.serverPath = serverPath;
    }

    public void start() {
        logger.info("client1 服务启动,准备初始化...");
        init();
    }

    public void init() {
        logger.info("client1 开始初始化...");
        logger.info("获取{}节点的子节点...", serverPath);
        List<String> children = getChildren();
        logger.info("{}子节点有{}:", serverPath, children.toString());
        logger.info("client1 使用负载均衡调用工作服务器进行工作....");
        String node = balance(children);
//        release(node);
        try {
            Thread.sleep(10000);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * 获取serverPath的子节点列表
     *
     * @return
     */
    public List<String> getChildren() {
        List<String> list = zkClient.getChildren(serverPath);
        List<String> list1 = new ArrayList<>();
        for (String string : list) {
            string = "/servers/".concat(string);
            list1.add(string);
        }
        return list1;
    }

    /**
     * 判断哪个工作服务器负载最小
     *
     * @param children
     */
    public String balance(List<String> children) {
        List<Integer> integerList = new ArrayList<>();
        for (String string : children) {
            ServerData serverData = zkClient.readData(string);
            Integer balanceNum = serverData.getBalanceNum();
            integerList.add(balanceNum);
        }
        Collections.sort(integerList);
        for (String string : children) {
            ServerData serverData = zkClient.readData(string);
            Integer balanceNum = serverData.getBalanceNum();
            Integer minBalanceNum = integerList.get(0);
            if (balanceNum.equals(minBalanceNum)) {
                logger.info("调用{}节点对应的服务器进行服务", string);
                balanceNum++;
                serverData.setBalanceNum(balanceNum);
                logger.info("更新{}节点负载情况", string);
                zkClient.writeData(string, serverData);
                return string;
            }
        }
        return null;
    }

    /**
     * 调用完毕,释放负载
     *
     * @param string
     */
    public void release(String string) {
        logger.info("释放{}节点的负载", string);
        ServerData serverData = (ServerData) zkClient.readData(string);
        serverData.setBalanceNum(serverData.getBalanceNum() - 1);
        zkClient.writeData(string, serverData);
    }

}

9、运行及运行结果:首先运行server模块,然后运行client模块;运行结果如下:

 

 

 

 

如果重新启动client2或者client3,则根据负载数,又会去调用server1的工作服务器 :

 

 

什么是Zookeeper Zookeeper是一个分布式开源框架,提供了协调分布式应用的基本服务,它向外部应用暴露一组通用服务——分布式同步(Distributed Synchronization)、命名服务(Naming Service)、集群维护(Group Maintenance)等,简化分布式应用协调及其管理的难度,提供高性能的分布式服务。ZooKeeper本身可以以单机模式安装运行,不过它的长处在于通过分布式ZooKeeper集群(一个Leader,多个Follower),基于一定的策略来保证ZooKeeper集群的稳定性和可用性,从而实现分布式应用的可靠性。 1、Zookeeper是为别的分布式程序服务的 2、Zookeeper本身就是一个分布式程序(只要有半数以上节点存活,zk就能正常服务) 3、Zookeeper所提供的服务涵盖:主从协调、服务器节点动态上下线、统一配置管理、分布式共享锁、统> 一名称服务等 4、虽然说可以提供各种服务,但是zookeeper在底层其实只提供了两个功能: 管理(存储,读取)用户程序提交的数据(类似namenode中存放的metadata);  并为用户程序提供数据节点监听服务; Zookeeper集群机制 Zookeeper集群的角色: Leader 和 follower  只要集群中有半数以上节点存活,集群就能提供服务 Zookeeper特性 1、Zookeeper:一个leader,多个follower组成的集群 2、全局数据一致:每个server保存一份相同的数据副本,client无论连接到哪个server,数据都是一致的 3、分布式读写,更新请求转发,由leader实施 4、更新请求顺序进行,来自同一个client的更新请求按其发送顺序依次执行 5、数据更新原子性,一次数据更新要么成功,要么失败 6、实时性,在一定时间范围内,client能读到最新数据 Zookeeper数据结构 1、层次化的目录结构,命名符合常规文件系统规范(类似文件系统)    2、每个节点在zookeeper中叫做znode,并且其有一个唯一的路径标识  3、节点Znode可以包含数据和子节点(但是EPHEMERAL类型的节点不能有子节点) 节点类型  a、Znode有两种类型: 短暂(ephemeral)(create -e /app1/test1 “test1” 客户端断开连接zk删除ephemeral类型节点)  持久(persistent) (create -s /app1/test2 “test2” 客户端断开连接zk不删除persistent类型节点) b、Znode有四种形式的目录节点(默认是persistent ) PERSISTENT  PERSISTENT_SEQUENTIAL(持久序列/test0000000019 )  EPHEMERAL  EPHEMERAL_SEQUENTIAL c、创建znode时设置顺序标识,znode名称后会附加一个值,顺序号是一个单调递增的计数器,由父节点维护          d、在分布式系统中,顺序号可以被用于为所有的事件进行全局排序,这样客户端可以通过顺序号推断事件的顺序 Zookeeper应用场景 数据发布与订阅(配置中心) 发布与订阅模型,即所谓的配置中心,顾名思义就是发布者将数据发布到ZK节点上,供订阅者动态获取数据,实现配置信息的集中式管理和动态更新。例如全局的配置信息,服务式服务框架的服务地址列表等就非常适合使用。 负载均衡 这里说的负载均衡是指软负载均衡。在分布式环境中,为了保证高可用性,通常同一个应用或同一个服务的提供方都会部署多份,达到对等服务。而消费者就须要在这些对等的服务器中选择一个来执行相关的业务逻辑,其中比较典型的是消息中间件中的生产者,消费者负载均衡。 消息中间件中发布者和订阅者的负载均衡,linkedin开源的KafkaMQ和阿里开源的 metaq都是通过zookeeper来做到生产者、消费者的负载均衡。这里以metaq为例如讲下: 生产者负载均衡:metaq发送消息的时候,生产者在发送消息的时候必须选择一台broker上的一个分区来发送消息,因此metaq在运行过程中,会把所有broker和对应的分区信息全部注册到ZK指定节点上,默认的策略是一个依次轮询的过程,生产者在通过ZK获取分区列表之后,会按照brokerId和partition的顺序排列组织成一个有序的分区列表,发送的时候按照从头到尾循环往复的方式选择一个分区来发送消息。 消费负载均衡: 在消费过程中,一个消费者会消费一个或多个分区
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值