做了18年研发的我,决定转型AI产品经理。
01
为什么?
总结下来,主要原因有这几个方面:
- AI编程将技术平权化
随着AI模型能力的提高,给AI编程行业带来了巨大的变化。一堆好用的AI编程工具瞬间涌现,比如:Cursor、Windsurf、Devin、Cline、Trae。
特别是在我亲自体验了Cursor以后,让我更明确和清醒的意识到未来谁都可以是程序员。
也就是说,只要你有一个想法,就可以借助AI编程工具,在一点技术基础都没有的情况下,开发出属于你自己的产品。
这将对程序员这个行业带来巨大的影响:
-
企业未来可能不再需要那么多程序员。
-
对程序员的编程能力要求会降低,因为遇到困难或者是不懂的编程项目完全可以通过AI的协助解决问题。
- AI应用即将迎来爆发期
如果说2021-2024是百模大战,那么我认为从2025开始一定是AI应用的爆发期。可以看到越来越多的企业不断将AI应用在自己的领域,这就意味着AI产品经理这个职位会有大量的需求和机会。
- 为什么不是转AI研发
我一直从事的是业务方向的C端产品研发,虽然都是技术岗位,但用到的技术栈离人工智能领域还是相差很大。同时由于深刻的意识到未来AI编程会对程序员这个行业产生非常大的影响,所以我决定转行。
4. 人人都是超级个体
在AI的加持下,人人都将是超级个体,一人公司将越来越流行。即使未来无法找到一份AI产品经理的工作,但是如果作为一个超级个体的一人公司,如何设计出一款解决真需求的产品一定是必须要学会的技能。这也是AI产品经理要解决的问题。
- 热爱并且相信AI
我对人工智能的发展一直在持续关注,并且充满了兴趣,现在每天都在用AI帮我解决各种问题。可以说,我的生活已经离不开AI了。
也许有很多从事技术岗位的同学都有和我一样的想法。那么我们从研发转型AI产品经理到底靠谱可行吗?
下面我就用AI使用SWOT分析一下,同时也可以为转型过程提供更加清晰的思路。
02
SWOT分析
下面是我使用deepseek进行分析的结果:
1. 优势 (Strengths)
-
技术背景:你有互联网研发的背景,这使你对AI的技术实现有深刻的理解,能够与开发团队更好地沟通和协作。技术敏感性高,能判断AI技术的可行性边界,避免“纸上谈兵”。
-
管理经验:从技术岗转为管理岗,培养了项目管理和团队协作的能力,这对于AI产品经理的角色至关重要,特别是在需求管理、团队协作、跨部门沟通等方面。
-
学习能力强:你有较强的学习能力,愿意学习AI产品经理所需要的知识。你的兴趣和动机也非常强,这能推动你持续进步。
-
对AI的热情:你对AI的关注和兴趣,使你能够将AI产品的相关理念和技术结合起来,设计出更具前瞻性和创新性的AI产品。长期在互联网行业积累的人脉和行业认知,有助于快速切入AI领域,理解市场需求
-
年龄与阅历优势:成熟稳重的职场经验能更好应对复杂项目,尤其在战略规划和资源整合上更具优势。
2. 劣势 (Weaknesses)
-
缺乏产品经理经验:你虽然有管理经验,但没有实际从事过产品经理的工作,因此可能会缺乏一些产品规划、市场分析、用户研究等核心能力。
-
AI产品的商业和用户思维相对薄弱:作为技术背景出身的你,可能更注重技术的实现,较少涉及市场需求、用户体验等非技术层面的思考。这可能导致初期在产品设计时忽视用户需求和商业价值。从技术/管理视角转向“用户需求驱动”的产品思维,需改变习惯性关注技术实现的倾向。
-
沟通和展示产品的能力:AI产品经理需要能够清晰地向团队、利益相关者以及客户展示产品的价值,而这一点可能需要在表达和沟通技巧上进一步强化。
-
年龄偏见(潜在):部分企业可能更倾向年轻候选人,需通过能力证明打破刻板印象。
3. 机会 (Opportunities)
-
AI产业的快速发展:AI技术的快速发展和广泛应用为AI产品经理提供了巨大的市场需求,尤其是在智能助手、自动化工具、推荐系统等领域。企业对AI产品经理需求激增,技术背景的PM更受青睐(如大模型应用、AI Agent设计)
-
跨界融合趋势:AI与各行各业的深度融合为AI产品经理带来了丰富的产品场景,可以探索更多创新型产品。移动互联网经验可迁移到AI+移动场景(如智能助手、AI+社交),形成差异化竞争力。
-
人才需求大:随着AI行业的蓬勃发展,越来越多的企业需要AI产品经理。虽然这个领域还在发展,但需求很大,机会丰富。
-
AI教育和培训资源丰富:你正在学习AI相关的技术,同时市场上也有很多关于AI产品经理的课程和资源,这为你的学习和转型提供了有力支持。
-
低代码/行业经验优势:未来AI开发门槛降低,但行业Know-How(如电商、教育)结合AI的需求会爆发,资深从业者更易切入垂直领域。
4. 威胁 (Threats)
-
激烈的竞争:AI产品经理的职位逐渐成为热门岗位,许多拥有产品管理经验或AI技术背景的人也在进入这个领域,竞争较为激烈。
-
市场对AI产品经理的认知差异:不同公司对AI产品经理的需求不同,市场上可能对AI产品经理的岗位职责定义不明确,可能会导致职业路径不稳定,面临一些不确定性。
-
AI技术更新迅速:AI技术更新速度快,作为AI产品经理,你需要时刻保持对技术的敏感性和快速学习的能力,以跟上行业的发展步伐。
-
初期薪资/职级落差:转型初期可能需接受薪资或职级调整,需做好心理预期。
总结下来,通过SWOT分析,更加明确了转型之路充满了机遇和挑战:在技术背景、管理经验和学习能力方面有着明显的优势,但需要补充产品管理经验、AI产品商业和用户思维以及AI技术原理相关知识体系。
03
如何转型
经过一番研究我给自己制定了一份从 产品管理基础 到 AI技术原理 再到 AI产品的商业与用户思维 最后到 AI项目实践 的学习路线。
短期目标:3个月内完成1个AI产品案例分析+1个原型设计。
中期目标:通过兼职或顾问角色接触真实项目。
04
写在最后
我会将学习过程中的心得、感悟、遇到的问题与解决方案分享出来。
如果你也是技术人,并且有同样的转型想法,欢迎一起探讨、学习。
种一棵树最好的时间是十年前,其次是现在
2025重新出发,加油!
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**
一、2025最新大模型学习路线
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1级别:AI大模型时代的华丽登场
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。
L2级别:AI大模型RAG应用开发工程
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3级别:大模型Agent应用架构进阶实践
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。
L4级别:大模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
二、大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
三、大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
四、大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
五、大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取