一、引言
很多AI
新手在接触大模型时都会被"微调"二字劝退。想实战没有环境?自己根本玩不转?本文带你用一杯咖啡的时间,了解大模型的微调技术,无需高端显卡,用魔塔社区免费资源即可实战体验,在实战中理解微调技术,感受薅羊毛的快乐!
根据具体需求(如训练速度、内存占用、灵活性等)选择合适的微调方案,本次以LoRA
为例进行微调测试。常见的微调技术如下:
1. 全参数微调(Full Fine-Tuning)
- 技术特点:更新所有模型参数,最大化任务适配
适用场景:
- 数据量充足(如10万+标注样本)
- 资源丰富的关键任务(如金融风控模型)
典型案例:医疗文本分类模型基于BERT的全参数微调
2. 参数高效微调(PEFT)
(1) LoRA(低秩适配)
- 原理:插入低秩矩阵仅训练新增参数
- 优势:显存占用降低70%,支持多任务切换
- 适用场景:移动端部署、多领域客服系统
(2) Prefix-Tuning
- 原理:在输入前添加可训练的前缀向量
- 优势:无需修改模型结构,适配对话生成任务
(3) Adapter
- 原理:在Transformer层间插入小型神经网络模块
- 优势:保持原模型参数冻结,适合跨语言迁移
3. 强化学习微调
(1) RLHF(基于人类反馈)
- 流程:SFT → 奖励模型训练 → PPO优化
- 适用场景:对话系统、创意文本生成(如GPT-4的调优)
(2) DPO(直接偏好优化)
- 特点:绕过奖励模型,直接利用偏好数据优化
- 优势:训练流程简化,适合缺乏标注资源的场景
二、测试流程
- 算力资源准备
- 微调环境准备配置
- 定制数据集
- 训练与推理
- 评估和对比
三、算力环境准备
在线算力资源地址:https://www.modelscope.cn/models/clouditera/SecGPT-1.5B
以SecGPT大模型为例,选择合适的镜像(以ubuntu22.04-cuda12.1.0-py311-torch2.3.1-tf2.16.1-1.25.0
为例),启动GPU环境实例(约需2分钟):
打开notebook
,以终端方式运行:
Notebook
当前支持默认工作目录 /mnt/workspace/
下数据的持久化保存,请确保需要保存的数据放置于该目录下
激活 python
虚拟环境:
python -m venv secgpt-vllm
source secgpt-vllm/bin/activate
四、微调环境准备
安装 vLLM
pip install --upgrade pip
pip install vllm
pip install modelscope
下载模型到环境中
(此次以secGPT预训练后的模型为例)
git lfs install
git clone https://www.modelscope.cn/clouditera/SecGPT-1.5B.git
以vllm的形式启动大模型服务
python -m vllm.entrypoints.openai.api_server \
--model ./SecGPT-1.5B \
--tokenizer ./SecGPT-1.5B \
--tensor-parallel-size 1 \
--max-model-len 32768 \
--gpu-memory-utilization 0.9 \
--dtype bfloat16
请求大模型示例测试
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "./SecGPT-1.5B",
"messages": [{"role": "user", "content": "什么是 XSS 攻击?"}],
"temperature": 0.7
}'
响应值如下:
{
"id":"chatcmpl-4594b9eafe4f4f4f870c72b03f152dcb",
"object":"chat.completion",
"created":1745844540,
"model":"./SecGPT-1.5B",
"choices":[
{
"index":0,
"message":{
"role":"assistant",
"reasoning_content":null,
"content":"XSS攻击是指攻击者通过在网站上注入恶意代码,当受害者访问该页面时,就会执行这些恶意代码。这种攻击可以窃取用户信息、控制用户的计算机,甚至进行其他非法活动。为了防止这类攻击,我们可以通过输入验证等安全措施来保护我们的网站和用户数据的安全。",
"tool_calls":[]
},
"logprobs":null,
"finish_reason":"stop",
"stop_reason":null
}
],
"usage":{
"prompt_tokens":35,
"total_tokens":102,
"completion_tokens":67,
"prompt_tokens_details":null
},
"prompt_logprobs":null
}
“temperature”: 0.7
“温度”参数是控制大模型生成内容多样性和随机性的一个重要参数,常用于文本生成、对话、写作等场景,常见取值范围是 0~2
,默认一般是 1
。它会影响模型在生成下一个词(token)时的概率分布。
具体作用:
- 温度低(如 0.1~0.5):
生成内容更“保守”、更确定,模型更倾向于选择概率最高的词。
适合需要严谨、标准答案的场景,比如问答、代码生成等。 - 温度高(如 0.7~1.5):
生成内容更“发散”、更有创造力,模型更容易选择概率较低但合理的词。
适合需要创意、写作、对话等场景。
例子:
- 温度为 0.1
“今天天气很好。”
- 温度为 1.0
“今天天气晴朗,适合出门散步。”
“今天有点阴,记得带伞。” 等多样化内容。
五、定制数据集
为什么不利用HuggingFace现有的数据集
由于SecGPT大模型本身的数据集投喂的效果比较好了,我尝试了几次,微调前回答的都很精准,所以此次为了验证Lora的微调细节,专门定制了几条“不真实的数据集”来投喂大模型,这样他肯定答不对,方便我进行微调,哈哈。
定制安全数据集喂大模型
利用transformers小批量进行微调测试(免费算力提供的Tesla P100的GPU架构老了,不支持vllm的特性)
以下是定制的数据集3条内容
custom_security_qa.jsonl
{"instruction":"SecGPT-1.5B的作者是谁?","input":"","output":"clouditera团队。"}
{"instruction":"本地安全策略编号LS-2024-001是什么?","input":"","output":"这是一个测试策略,用于演示LoRA微调效果。"}
{"instruction":"CVE-2099-99999属于什么漏洞类型?","input":"","output":"本地提权。"}
微调前让大模型回答定制数据集里的内容
微调前的代码如下:
# cat pretrain_before.py
from transformers import AutoModelForCausalLM, AutoTokenizer
# 加载模型和分词器
model = AutoModelForCausalLM.from_pretrained("./SecGPT-1.5B", trust_remote_code=True).half().cuda()
tokenizer = AutoTokenizer.from_pretrained("./SecGPT-1.5B", trust_remote_code=True)
# 定制问答
questions = [
{"question": "SecGPT-1.5B的作者是谁?", "label": "clouditera团队。"},
{"question": "本地安全策略编号LS-2024-001是什么?", "label": "这是一个测试策略,用于演示LoRA微调效果。"},
{"question": "CVE-2099-99999属于什么漏洞类型?", "label": "本地提权。"}
]
for item in questions:
q = item["question"]
label = item["label"]
inputs = tokenizer(q, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=64, do_sample=False)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
# 只保留模型生成的答案部分
answer = answer.replace(q, "").strip()
print(f"【问题】{q}")
print(f"【标准答案】{label}")
print(f"【模型输出】{answer}")
print(f"【是否答对】{'✔️' if label in answer else '❌'}")
print("="*50)
运行结果如下,没有微调前的大模型回答显然是一派胡言。
六、微调训练与推理
6.1 LoRA 微调步骤
6.1.1 安装依赖
pip install transformers peft datasets accelerate
6.1.2 构建 LoRA 微调脚本
代码主要包含三个核心部分:
- LoRA 配置部分:用于提供模型结构和性能参数
- 训练配置部分:控制训练流程和参数
- 生成配置部分:用于推理阶段的生成控制
(1)LoRA 配置部分(相当于投影仪的硬件配置)
- 就像投影仪的分辨率、亮度、对比度等硬件参数
r=8
:相当于投影仪的分辨率,决定画面清晰度target_modules
:选择需要调整的“部件”(如镜头、灯泡)lora_alpha
:控制调整的幅度,相当于亮度调节- 这些参数决定了模型的基本“硬件性能”
(2) 训练配置部分(相当于投影仪的调试过程)
learning_rate
:调试的精细程度,越大越激进batch_size
:每次调试使用的样本量num_train_epochs
:调试总次数,影响最终效果fp16
:节能模式,减少资源消耗但可能影响精度
(3) 生成配置部分(相当于投影仪的使用设置)
max_new_tokens
:画面的最大尺寸temperature
:画面锐度与柔和度调节do_sample
:是否启用自动优化num_beams
:是否使用多路径优化
6.1.3 完整微调代码
# train_lora.py
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
from peft import LoraConfig, get_peft_model
from datasets import load_dataset
import torch
# 1. 加载模型和分词器
model_path = "./SecGPT-1.5B"
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
trust_remote_code=True,
local_files_only=True
)
tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code=True,
local_files_only=True
)
# 2. LoRA 配置
lora_config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.0,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
# 3. 数据预处理函数
defpreprocess(example):
prompt = f"Instruction: {example['instruction']}\nInput: \nOutput: {example['output']}"
tokenized = tokenizer(
prompt,
truncation=True,
max_length=128,
padding="max_length",
return_tensors="pt"
)
return {
'input_ids': tokenized['input_ids'][0],
'attention_mask': tokenized['attention_mask'][0],
'labels': tokenized['input_ids'][0].clone()
}
# 4. 加载和处理数据
dataset = load_dataset("json", data_files={"train": "custom_security_qa.jsonl"})["train"]
tokenized_dataset = dataset.map(
preprocess,
batched=False,
remove_columns=dataset.column_names
)
# 5. 训练配置
training_args = TrainingArguments(
output_dir="./lora_security_qa",
per_device_train_batch_size=3,
gradient_accumulation_steps=1,
num_train_epochs=20,
learning_rate=5e-3,
logging_steps=1,
save_strategy="no",
fp16=True,
remove_unused_columns=False,
)
# 6. 训练
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
)
print("开始训练...")
trainer.train()
print("训练完成!")
# 7. 保存模型
model.save_pretrained("./lora_security_qa")
# 8. 测试生成
print("\n开始测试...")
model.eval()
model.config.temperature = None
model.config.top_p = None
model.config.top_k = None
model.config.do_sample = False
test_questions = [
"SecGPT-1.5B的作者是谁?",
"本地安全策略编号LS-2024-001是什么?",
"CVE-2099-99999属于什么漏洞类型?"
]
for question in test_questions:
prompt = f"Instruction: {question}\nInput: \nOutput:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
generation_config = {
"max_new_tokens": 50,
"num_return_sequences": 1,
"do_sample": False,
"num_beams": 1,
"pad_token_id": tokenizer.pad_token_id,
"eos_token_id": tokenizer.eos_token_id,
"temperature": None,
"top_p": None,
"top_k": None,
}
outputs = model.generate(
**inputs,
**generation_config
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
answer = response.split("Output:")[-1].strip() if"Output:"in response else response
print(f"\n问题:{question}")
print(f"答案:{answer}")
print("="*50)
6.2 微调效果与结果展示
6.2.1 执行微调脚本
执行微调脚本后,微调页面大致如下所示。
6.2.2 微调后模型输出示例
微调后的大模型在定制数据集上的回答准确率明显提高,能够给出合理、准确的回答。
可见微调后的大模型对定制的数据集回答都正确了,成就感满满。
七、评估与对比
微调前:
微调后:
八、小结
杰拉尔德在《你的灯亮着吗:如何找到真问题》中说过:“如果你不能根据对问题的理解想出至少三个有可能出错的地方,那你就没有真正理解这个问题”。作为售前工程师,这句话给我的启发就是针对一项技术或者一个产品如果提不出来可能会被客户问到的至少三个问题,那么这个技术或者产品就是没有真正理解。对于此次微调验证的过程,我提出了以下三个问题作为总结:
Q1: 代码一顿输出,效果是有了,我该如何理解 LoRA 呢?(Low-Rank Adaptation 低秩适应)
A1:把微调前的原始大模型比做原始照片,LoRA微调可以理解为在照片上添加滤镜,但是保留所有信息,只是调整效果;而其他微调技术比如全参数微调,相当于用新相机重新拍摄,所有参数都可以调整,成本高但是效果好;强化学习微调技术相当于专业摄影师实时指导,根据反馈不断调整,通过奖励机制学习。
Q2: 微调过程中会遇到哪些问题呢?
A2:以本次测试的LoRA为例,LoRA的参数配置很多,如果一开始不了解,盲目调试,每次训练过程会很慢而且效果不好,所以要结合具体的需求场景调整对应的参数,另外训练过程代码也要进行优化,加快训练速度(GPU性能是硬实力)。
Q3: 实际微调过程如何评估模型回答的效果呢?
A3:在大模型中,可以通过准确率(Precision)、召回率(Recall)和F1值(F1-Score)来评估微调效果,但需要结合具体任务类型综合判断,计算公式这里不赘述了,以下是几种指标对应的场景示例:
案例 1:医疗诊断场景(高召回率优先)
- 需求:癌症筛查需尽可能减少漏诊(FN),即使误诊(FP)导致额外检查。
- 策略:降低模型阈值,如召回率从 70% → 90%,但精确率从 80% → 60%。
- 代价:10%的误诊率增加,但漏诊风险显著降低。
案例 2:垃圾邮件过滤场景(高精确率优先)
- 需求:避免正常邮件被误判(FP),即使少量垃圾邮件漏过(FN)。
- 策略:提高模型阈值,如精确率从 60% → 90%,但召回率从 80% → 50%。
- 代价:漏掉 50% 的垃圾邮件,但用户收件箱更干净。
案例 3:电网故障检测场景(平衡 F1 值)
- 需求:既要减少误报(避免误触发停电),又要减少漏报(防止设备损坏)。
- 策略:通过调整阈值使 F1 值(精确率与召回率的调和平均)最大化,达到综合最优。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。