很多人以为大模型只是一段高明的算法,或者一个庞大的参数体系。其实,它更像是一座技术摩天大楼——从“地基”到“楼顶”,每一层都藏着关键技术秘密。本文不是空谈概念,而是带你一层层拆解 AI 系统的六大核心结构:从底层的GPU硬件、云原生调度,到模型优化、RAG 检索、再到智能应用如何真正落地。看完之后,你会明白,搭建一个大模型系统,绝不仅仅是调几个参数那么简单。
一、基础设施层:AI世界的“地基”
大模型训练和推理非常“吃资源”,这就好比要建一座摩天大楼,首先你要有坚固的地基,这个“地基”就是基础设施层,包括各种硬件和网络。
1.1 GPU、TPU、异构加速
-
GPU(图形处理器):
-
原本是给游戏渲染图像用的,但因为“并行运算能力强”,被用于AI训练;
-
一个 GPU 可以有上千个核心,非常适合训练包含上百亿参数的大模型;
-
主流产品如:NVIDIA A100、H100。
-
TPU(张量处理器):
-
由谷歌开发,专为深度学习定制,性能比GPU在某些模型上更高;
-
用于Google内部的模型训练(如PaLM、Gemini)。
-
异构加速:
-
指不是只用 GPU 或 TPU,而是用不同类型的芯片搭配,比如 GPU+CPU、TPU+FPGA 等;
-
好处:在保证性能的同时降低成本,适配不同任务。
1.2 CPU、内存、硬盘、网络
-
CPU:
-
负责整个训练流程的调度,比如数据加载、任务划分、节点调度;
-
不适合大规模矩阵运算,但缺了它训练就无法启动。
-
内存(RAM):
-
存放中间计算结果、模型权重临时副本;
-
模型越大,训练 batch 越大,对内存要求也越高。
-
硬盘(HDD/SSD):
-
存储数据集、模型文件、日志;
-
SSD比传统硬盘更快,对训练速度影响明显。
-
网络(高速互联):
-
多个GPU/TPU训练任务之间需要实时传输数据,比如模型参数、梯度;
-
需用到高带宽低延迟网络,比如Infiniband、RDMA。
二、云原生层:让训练和部署更“灵活弹性”
有了硬件“地基”,怎么把模型代码部署进去?如何做到快速扩容、自动重启、统一运维?这就需要云原生技术。
2.1 Docker 容器化
-
容器是什么?
-
可以理解为“虚拟机的轻量版本”,把程序+依赖打包成一整个运行环境;
-
无需在每台机器上重复安装环境。
-
优点:
-
环境隔离:不同模型或微服务之间互不干扰;
-
可复现:相同镜像在任何地方运行结果一致;
-
快速部署:启动速度比虚拟机快很多。
2.2 Kubernetes(K8s)集群调度
-
核心功能:自动调度、扩容、健康管理。 例如:
-
模型推理服务请求变多 → 自动扩容;
-
某个GPU节点宕机 → 自动将任务迁移到其他节点;
-
自动负载均衡:避免某台服务器被打爆。
-
组件说明:
-
Pod:最小的计算单元,包含1个或多个容器;
-
Deployment:控制 Pod 的部署策略;
-
Service & Ingress:负责对外提供服务,做负载均衡和域名路由;
-
ConfigMap & Secret:存放配置文件和敏感信息(如API密钥)。
三、模型层:大模型“聪明大脑”所在
这是整个系统的“核心大脑”,决定了你用AI能做多少事、有多强。
3.1 大语言模型(LLM)
-
预训练:
-
类似“看了全世界的文本书籍”之后,学会语言模式;
-
训练数据动辄是TB级别的文本;
-
使用自监督学习:预测下一个词、填空、排序等任务。
-
参数规模:
-
参数=模型的“记忆神经元”;越多越聪明,但训练和推理成本越高;
-
ChatGPT使用的GPT-4估计超过千亿参数。
-
优化算法:
-
比如 AdamW、LAMB,能更快让模型“学会”;
-
优化器决定模型训练速度和最终效果。
3.2 多模态模型与专用小模型
-
图文多模态模型(如 CLIP、BLIP):
-
输入图像+文字,能理解图文关系;
-
应用于图像问答、商品识别等场景。
-
智能文档理解模型(如 LayoutLM、Donut):
-
结合图像OCR + 文本语义 + 版式信息,能读懂表格、合同、发票等文档。
-
召回/排序模型(BERT、DSSM):
-
用于检索场景,先从大库中筛选出相关项再送入大模型生成;
-
提升响应速度,降低成本。
-
异常检测模型:
-
对输入图像/语音/数据流进行特征提取,识别是否异常或敏感。
四、应用技术层:把模型“变聪明”的方法
模型虽然强大,但直接问它一个问题,可能答得不准。这时候就需要这些技术手段“引导”模型表现得更好。
4.1 Prompt Engineering(提示词工程)
-
原理:输入时加上“提示语”让模型更准确理解你要干什么;
-
例如:
-
不加 Prompt:
苹果
→ 模型不知道是水果还是公司; -
加 Prompt:
请把‘苹果’翻译成英文
→ 正确返回Apple
; -
高级用法:
-
Few-shot(少样本示例);
-
Chain of Thought(思维链);
-
Role Prompt(设定身份);
-
指令+例子+约束(标准格式、字数、风格等)。
4.2 Chain of Thought(思维链推理)
-
让模型“按步骤思考”,而不是直接得出答案:
-
Prompt 示例: “请一步步推理你的答案:小明有3个苹果,小红给了他2个,现在他有多少个?”
-
模型会先算原来有3个、再加2个,最后说出“5个”。
-
提高模型回答复杂逻辑题目的能力。
4.3 微调(Fine-tuning)
-
全量微调:
-
用你的行业数据重新训练所有模型参数;
-
成本高,对算力要求大。
-
参数高效微调(如 LoRA、Adapter):
-
只训练一小部分参数,加入到主模型中;
-
成本低、部署快,可热插拔。
4.4 RAG(检索增强生成)
-
问题:大模型记不住实时信息或内部文档;
-
解决方案:
-
建立企业/行业知识库(向量化);
-
用户提问时,先检索相关内容;
-
把检索结果 + 用户问题一起送进模型;
-
模型参考资料作答。
-
关键组件:
-
向量数据库(如FAISS、Milvus);
-
文档拆分 + 嵌入编码;
-
检索召回 + 结果拼接。
4.5 数据链路:采、治、控
-
采集(抓取):爬虫、API、上传、Webhook;
-
清洗:去噪、分词、格式统一;
-
治理:元数据、数据血缘、敏感信息脱敏;
-
权限控制:谁能访问哪些数据,需通过认证机制、加密传输。
五、应用架构层:如何支撑系统长期稳定运行
这是将模型技术“落地”的重要部分。
5.1 工程架构
-
CI/CD 流水线:持续集成 + 持续部署;
-
每次提交代码 → 自动测试 → 构建镜像 → 自动部署。
-
服务监控:
-
使用 Prometheus 收集模型服务指标;
-
Grafana 实时展示 CPU 使用率、延迟等。
-
日志管理:
-
使用 ELK 或 EFK 堆栈集中收集日志,方便定位问题;
-
Trace工具(如Jaeger)追踪一次完整请求路径。
5.2 业务架构
-
微服务划分:
-
将问答服务、对话服务、RAG检索、图像识别等解耦;
-
各服务可独立部署、升级、扩展。
-
消息队列:
-
使用 Kafka/RocketMQ 解耦异步任务,如数据入库、批量推理等。
5.3 云原生架构优化
-
Serverless/FaaS:
-
例如每晚自动生成日报,可用 Serverless 函数运行;
-
节省资源,按调用付费。
-
服务网格(如 Istio):
-
提供流量控制、超时重试、灰度发布、安全认证等高级功能;
-
统一管理跨服务间通信。
六、行业应用层:智能化场景落地
6.1 RAG类应用:企业知识库助手
-
文档上传后自动拆解、向量化;
-
员工提问如:“我们公司请假的流程是什么?” → 模型基于知识库精准回复;
-
场景:HR问答、财务制度问答、IT支持等。
6.2 Agent类应用:智能助手系统
-
设计多个Agent协作完成复杂任务:
-
任务分解 → 信息查询 → 策略判断 → 文案生成;
-
应用于:
-
报销单智能审核;
-
合同智能标注;
-
财务机器人编写分析报告。
6.3 OLTP类应用:智能对话、合同优化
-
多轮对话客服:支持上下文记忆;
-
智能润色:对合同文案进行专业优化;
-
关键信息提取:从合同中提取金额、甲乙方、签约时间等。
6.4 OLAP类应用:数据分析 + 报表自动生成
-
用户输入:“帮我生成过去30天的销售分析图”;
-
LLM 转为 SQL,自动生成可视化仪表盘;
-
场景:BI系统、财务分析、运营日报等。
七、 总结
今天的AI,早已不是“某个模型”的胜利,而是“一个系统”的合力。它需要GPU燃料的“猛火”、云原生调度的“灵活手”、Prompt与RAG的“聪明脑袋”,再加上工程架构和业务场景的“落地双脚”。想搭建自己的AI系统,别盯着模型看,要学会看全景图。只有地基稳了,脑袋聪明了,落地方式也通顺了,你的AI才能跑得动、答得准、用得爽。大模型不只是一个模型,而是一套完整的技术栈与工程体系。
你只有理解了:
-
底层靠什么跑得动(算力+云原生),
-
中间靠什么变聪明(模型+Prompt+RAG),
-
上层靠什么落地业务(Agent+知识库+分析系统),
才能真正构建出“高可用、高响应、高智能”的AI系统。
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**
一、2025最新大模型学习路线
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1级别:AI大模型时代的华丽登场
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。
L2级别:AI大模型RAG应用开发工程
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3级别:大模型Agent应用架构进阶实践
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。
L4级别:大模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
二、大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
三、大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
四、大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
五、大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取