最长公共子序列(动态规划)

注意:

1、字符串X和Y的下标范围是0~m-1和0~n-1,如果不在输入时做特殊处理的话(即:gets(X)),在LCSLength中判断条件就要改成x[i-1]==y[j-1],LCS中    cout<<x[i-1];不改的话,也能输出正确的长度主要是因为X,Y都是全局变量,默认初始化后XY里面全是0,所以X[m]==Y[n],事实就是如果你输入abcd    abc,程序实际算了bcd0     bc0

      如果在输入时做特殊处理(即:gets(X+1)),在LCSLength中判断条件就可以成x[i]==y[j],LCS中    cout<<x[i];

2、    for(i=0;i<=m;i++) dp[i][0]=0;  此处i要从0开始

3、    LCS(m,n,X,b);    此处要写X,即输出X中的共同字符,否则可能输不出结果

#include<iostream>
#include<cstring>
using namespace std;
const int N=100;
char X[N],Y[N];
int dp[N][N];//dp[i][j]记录最长公共子序列的长度
int b[N][N];//b[i][j]记录dp[i][j]由哪一个子问题解得 
int LCSLength(char *x,char *y,int m,int n)//求最长公共子序列的长度
{
	int i,j;
	for(i=0;i<=m;i++) dp[i][0]=0;//Y字符串长度为0时,最长公共子序列的长度为0
	for(j=0;j<=n;j++) dp[0][j]=0;//X字符串长度为0时,最长公共子序列的长度为0  
	for(i=1;i<=m;i++)
	for(j=1;j<=n;j++)
	{
		if(x[i]==y[j])//X字符串中i位置的字符==Y字符串中j位置的字符 
		{
			dp[i][j]=dp[i-1][j-1]+1;
			b[i][j]=1;
		}
		else if(dp[i-1][j]>=dp[i][j-1])//若不考虑b[][],可简写为dp[i][j]=max(dp[i-1][j],dp[i][j-1])
		{
			dp[i][j]=dp[i-1][j];
			b[i][j]=2;
		}
		else
		{
			dp[i][j]=dp[i][j-1];
			b[i][j]=3; 
		} 
	 } 
	 return dp[m][n];
} 
int LCS(int i,int j,char *x,int (*b)[N])//构造最长公共子序列 
{
	if(i==0||j==0) return 0;
	if(b[i][j]==1)
	{
		LCS(i-1,j-1,x,b);
		cout<<x[i];
	}
	else if(b[i][j]==2)
	{
		LCS(i-1,j,x,b); 
	}
	else
	{
		LCS(i,j-1,x,b);
	}
} 
int main()
{
	gets(X+1);//从下标为1开始读入 
	gets(Y+1);
	int m=strlen(X+1);//由于读入时下标从1开始,因此读取长度也从+1开始 
	int n=strlen(Y+1);
	cout<<"X和Y最长公共子序列的长度:"<<LCSLength(X,Y,m,n)<<endl;
	cout<<"X和Y最长公共子序列为:";
	LCS(m,n,X,b);	
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值