AI 编程工具:Augment Code

在这里插入图片描述

Meet Augment Agent: Your AI pair programmer that deeply understands your codebase, and learns as you work

Augment 是开发人员AI平台,它可以帮助您理解代码、调试问题,并更快地发布,因为它了解您的代码库。使用聊天、Next Edit和Augment Agent 来完成更多的工作。

Augment 团队一直在跟踪并优化其在 SWE-bench 上的表现。作为行业标准的代码基准测试工具,SWE-bench 被广泛认为是衡量 AI 智能体处理真实世界代码能力的重要指标。2025年3月31日,Augment 宣布他们在 SWE-bench 验证集上取得了 65.4% 的成功率,并开源了他们的方法,展示了如何登上排行榜的首位。

由于 Anthropic 的模型目前在代码生成领域处于领先地位,Augment 选择了 Claude Sonnet 3.7 作为其智能体的核心驱动程序。Augment 表示,他们正在通过强化学习和专有数据微调自己的模型,以显著降低智能体的成本和延迟,通过训练更快、更便宜的智能体,他们希望实现全新的 AI 编程体验。

Next Edit:让代码修改更智能、更高效

作为一名开发者,您是否曾经经历过这样的痛苦?在某个文件中更新了一个字段后,接下来需要在整个代码库中查找并更新相关的 SQL 查询、测试用例和类型定义。为了解决这一问题,Augment 推出了 Next Edit 功能。它不仅仅关注光标下的代码,还能理解您的更改带来的连锁反应,并自动为您整个工作区提供建议,确保代码始终保持一致。无论您是在编写新代码还是重构现有代码,Next Edit 都能在后台扫描代码库,识别依赖文件,并生成上下文相关的建议,帮助您快速完成任务。

Next Edit 依靠专门训练的位置模型,并结合您最近的编辑历史,即使在大文件或多文件环境中也能提供建议。相比之下,其他工具通常需要手动移动光标才能触发建议。强大的代码库检索能力,Next Edit 利用了 Augment 的先进代码库检索技术,能够提供更加准确且上下文感知的建议。

Augment Agent

Augment Agent 是由 Augment Code 团队精心打造的一款智能助手,旨在为从全新应用到包含超过10万文件的单体代码库提供高质量代码生成服务。无论是新手还是经验丰富的开发者,都可以通过注册其提供的 14天免费试用 来体验这一强大的工具。目前,它支持 VS CodeJetBrains 两大流行的集成开发环境(IDE)。

上下文的力量——记忆与工具

Augment 引以为豪的 Context Engine(上下文引擎) 能确保每次 AI 交互都基于正确的上下文信息,这是它区别于其他竞争对手的一大特色。此外,通过引入 Memories(记忆功能),Agent 可以根据您的使用习惯自动调整并优化代码生成过程,使其更加贴合您的个人编码风格和模式。

为了整合分散在软件开发生命周期中的上下文信息,全面拥抱了 MCP(模型上下文协议),提供对各种工具和系统的访问权限,包括 GitHub、Jira、Confluence、Notion 和 Linear。早期采用者已经利用 Vercel、Cloudflare 等基础设施 MCP 来添加额外的上下文、自动化工作流以及调试生产问题。如果你希望 Agent 在您开始编码时播放 Spotify 上的 Lo-fi 歌单,它也能做到!

行业领先的上下文容量

Augment Agent 拥有高达 20万 tokens 的上下文处理能力,这使得它能够在复杂的代码库中游刃有余,处理那些可能导致其他解决方案崩溃的任务。这种强大的处理能力意味着您可以自信地应对任何规模的开发挑战。

更多功能等待探索

  • 代码检查点(Code Checkpoints):让您可以轻松回滚更改,保持编程风格的一致性。
  • 多模态支持(Multi-Modal):支持分享截图、Figma 文件等,方便解决UI设计中的问题。
  • 终端命令(Terminal Commands):不仅可以搜索文件和编辑代码,还能运行如 npm install 或 Git 相关的命令。
  • 自动模式(Auto Mode):当您希望Agent自动执行某些操作而不需逐一确认时,可以选择此模式。

透明定价与社区反馈

对于开发者而言,了解一款新工具的成本至关重要。Augment 提供了透明的定价策略,并且为了更好地理解用户需求,他们推出了无限制的早期采用者定价计划。如果您有任何意见或建议,可以通过 Discord 向团队反馈。

以下是关于 Windsurf、Cursor 和 Augment 三款 AI 编程工具的对比分析,基于功能特性、适用场景和核心优势的综合评估:

对比

  1. Augment Code
    • 专长领域:专注处理 大型复杂代码库,通过 RAG 技术实现项目级代码理解,支持跨文件索引(20万 token 上下文)和团队协作风格适配。
    • 核心优势:持久性记忆、多模态输入(支持截图/Figma 文件分析),在 SWE-Bench 测试中排名第一(65.4% 准确率)。
    • 适用场景:企业级项目、需要深度理解代码架构的团队开发。

  2. Cursor
    • 专长领域:面向 专业开发者 的高端工具,提供智能代理模式(自动生成代码/执行命令)、多文件工作流和 Git 提交自动化。
    • 核心优势:功能矩阵全面(如缺陷检测、语义化搜索)、高度可控的上下文管理(支持 Git 分支/网页搜索标记)。
    • 适用场景:需要高阶功能(如自动化测试修复)和专业工作流的开发团队。

  3. Windsurf
    • 专长领域:主打 简洁体验与自动化代理,Cascade 功能可自动填充上下文、运行命令,界面设计接近苹果风格。
    • 核心优势:双模切换(代码生成/知识问答)、实时预览未保存的 AI 生成结果,降低误操作风险。
    • 适用场景:新手开发者、中小型项目或追求流畅开发体验的个人用户。

结语

Augment Agent 正在重新定义我们编写代码的方式,为开发者提供前所未有的支持。无论您是想要提升个人生产力,还是希望通过更好的工具来增强团队协作,Augment Agent 都值得一试。

如果这篇文章对您有所帮助,欢迎点赞、分享和留言,让更多的人受益。感谢您的细心阅读,如果发现了任何错误或需要补充的地方,请随时告诉我,我会尽快处理 ^_^

### 如何在软件开发中增强代码 在软件开发过程中,“增强代码”通常指的是通过改进现有代码的功能、性能或可维护性来提升其质量。这可以通过多种方式实现,包括但不限于引入新的技术、优化算法、重构代码以及利用数据增强技术。 #### 数据增强技术的应用 如果目标是通过增加训练数据的多样性来提高模型的表现,则可以借鉴图像处理中的数据增强方法[^2]。尽管这种方法主要用于机器学习领域,但在某些情况下也可以扩展到其他类型的输入数据上。例如,在自然语言处理(NLP)项目中,可以通过同义词替换、句子重组等方式生成更多的样本来扩充语料库。 #### 系统架构层面考虑 从更广泛的视角来看,当讨论如何增强代码时,还需要考虑到系统的整体设计——即系统架构的作用不可忽视[^3]。合理的系统架构能够使得未来的修改更加容易实施;它定义了各个组成部分之间的关系及其相互作用模式。具体来说: - **模块结构**决定了哪些部分应该作为独立单元存在并可能被重用。 - **构件连接器结构**描述了这些部件之间是如何协作完成任务的。 - **分配结构**则进一步明确了资源分布情况,这对于分布式应用尤为重要。 因此,在规划任何有关增强代码的工作之前,先审视当前项目的体系框架是非常必要的。 #### 类比理解AOP概念下的代码增强 面向切面编程(Aspect-Oriented Programming,AOP)提供了一种机制用于分离横切关注点(cross-cutting concerns),从而简化复杂度较高的程序逻辑[^4]。通过这种方式,可以在不改变原有业务流程的前提下向其中注入额外的行为特性—这种操作实际上也是一种形式上的“代码增强”。 下面给出一段简单的Python示例演示如何使用装饰器(decorator pattern)来进行基本的日志记录功能添加,这是AOP思想的一个简单体现: ```python def log_decorator(func): def wrapper(*args, **kwargs): print(f"Calling function '{func.__name__}' with arguments {args} and keyword arguments {kwargs}") result = func(*args, **kwargs) print(f"Function '{func.__name__}' returned {result}") return result return wrapper @log_decorator def add(a, b): return a + b add(5, 7) ``` 上述例子展示了如何无需改动`add()`函数本身即可为其增添日志打印能力。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AaronZZH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值