csp 201909-5 城市规划 (DP)

题目链接

http://118.190.20.162/view.page?gpid=T90

解题思路

考虑DP,F[i][j]表示i子树中选j个点的代价,注意到某个子树与父亲相连的边的代价只与子树选的点个数有关,可以在转移时对每条边计算代价。
DP转移:
F[i][j]=min{F[i][j-k]+F[son][k]+k ∗ \ast (K-k) ∗ \ast c},k为子树选取点个数,c为边代价。
时间复杂度O(NK^2)

代码

#include <bits/stdc++.h>
using namespace std;
const int MAXN=50010;
const long long INF=1LL<<60;
int tot,head[MAXN];
struct Edge {int to,net,v;}E[MAXN<<1];
void addedge(int x,int y,int v)
{
	E[++tot].to=y;E[tot].net=head[x];head[x]=tot;E[tot].v=v;
	E[++tot].to=x;E[tot].net=head[y];head[y]=tot;E[tot].v=v;
}
int N,M,K,fa[MAXN],size[MAXN];long long F[MAXN][210];bool Mark[MAXN];
void dfs(int x)
{
	for (int i=1;i<=K;++i) F[x][i]=INF;
	if (Mark[x]) size[x]=1,F[x][1]=0;
	for (int i=head[x];i;i=E[i].net)
		if (E[i].to!=fa[x])
		{
			fa[E[i].to]=x;
			dfs(E[i].to);
			size[x]+=size[E[i].to];
			for (int j=min(K,size[x]);j;--j)
			{
				int v=min(size[E[i].to],min(K,j));
				for (int k=1;k<=v;++k)
					F[x][j]=min(F[x][j],F[x][j-k]+F[E[i].to][k]+1LL*(K-k)*k*E[i].v);
			}
		}
}
int main()
{
	cin>>N>>M>>K;
	for (int i=1;i<=M;++i)
	{
		int x;
		scanf("%d",&x);
		Mark[x]=true;
	}
	for (int i=1;i<N;++i)
	{
		int x,y,v;
		scanf("%d%d%d",&x,&y,&v);
		addedge(x,y,v);
	}
	dfs(1);
	cout<<F[1][K]<<endl;
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值