LeetCode: 1074. 元素和为目标值的子矩阵数量

给出矩阵 matrix 和目标值 target,返回元素总和等于目标值的非空子矩阵的数量。

子矩阵 x1, y1, x2, y2 是满足 x1 <= x <= x2 且 y1 <= y <= y2 的所有单元 matrix[x][y] 的集合。

如果 (x1, y1, x2, y2) 和 (x1', y1', x2', y2') 两个子矩阵中部分坐标不同(如:x1 != x1'),那么这两个子矩阵也不同。

 

示例 1:

输入:matrix = [[0,1,0],[1,1,1],[0,1,0]], target = 0
输出:4
解释:四个只含 0 的 1x1 子矩阵。
示例 2:

输入:matrix = [[1,-1],[-1,1]], target = 0
输出:5
解释:两个 1x2 子矩阵,加上两个 2x1 子矩阵,再加上一个 2x2 子矩阵。
示例 3:

输入:matrix = [[904]], target = 0
输出:0
 

提示:

1 <= matrix.length <= 100
1 <= matrix[0].length <= 100
-1000 <= matrix[i] <= 1000
-10^8 <= target <= 10^8

分析:

       该题暴力的做法是在枚举右下角坐标的同时,枚举左上角的坐标,复杂度是O(m^{2}*n^{2})。

       对此题进行优化,我们可以利用前缀和 + 哈希表的方式。思想类似于LeetCode: 560. 和为K的子数组。我们对矩形的上边界进行枚举的同时,枚举下边界。这样我们就选定了其中n行,此时需要我们确定矩形的左右边界。可以注意到,对于这n行来说,当我们选定左右边界的时候,边界在各行中的位置是相同的。所以我们考虑把n行合并位1行,利用上面提到的题目的思想,确定矩形的数量。复杂度是O(m^{2} * n)。以下代码来自于官方题解。

class Solution {
private:
    int subarraySum(vector<int> &nums, int k) {
        unordered_map<int, int> mp;
        mp[0] = 1;
        int count = 0, pre = 0;
        for (auto &x:nums) {
            pre += x;
            if (mp.find(pre - k) != mp.end()) {
                count += mp[pre - k];
            }
            mp[pre]++;
        }
        return count;
    }

public:
    int numSubmatrixSumTarget(vector<vector<int>> &matrix, int target) {
        int ans = 0;
        int m = matrix.size(), n = matrix[0].size();
        for (int i = 0; i < m; ++i) { // 枚举上边界
            vector<int> sum(n);
            for (int j = i; j < m; ++j) { // 枚举下边界
                for (int c = 0; c < n; ++c) {
                    sum[c] += matrix[j][c]; // 更新每列的元素和
                }
                ans += subarraySum(sum, target);
            }
        }
        return ans;
    }
};

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/number-of-submatrices-that-sum-to-target/solution/yuan-su-he-wei-mu-biao-zhi-de-zi-ju-zhen-8ym2/
来源:力扣(LeetCode)

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值