给出矩阵 matrix 和目标值 target,返回元素总和等于目标值的非空子矩阵的数量。
子矩阵 x1, y1, x2, y2 是满足 x1 <= x <= x2 且 y1 <= y <= y2 的所有单元 matrix[x][y] 的集合。
如果 (x1, y1, x2, y2) 和 (x1', y1', x2', y2') 两个子矩阵中部分坐标不同(如:x1 != x1'),那么这两个子矩阵也不同。
示例 1:
输入:matrix = [[0,1,0],[1,1,1],[0,1,0]], target = 0
输出:4
解释:四个只含 0 的 1x1 子矩阵。
示例 2:
输入:matrix = [[1,-1],[-1,1]], target = 0
输出:5
解释:两个 1x2 子矩阵,加上两个 2x1 子矩阵,再加上一个 2x2 子矩阵。
示例 3:
输入:matrix = [[904]], target = 0
输出:0
提示:
1 <= matrix.length <= 100
1 <= matrix[0].length <= 100
-1000 <= matrix[i] <= 1000
-10^8 <= target <= 10^8
分析:
该题暴力的做法是在枚举右下角坐标的同时,枚举左上角的坐标,复杂度是O()。
对此题进行优化,我们可以利用前缀和 + 哈希表的方式。思想类似于LeetCode: 560. 和为K的子数组。我们对矩形的上边界进行枚举的同时,枚举下边界。这样我们就选定了其中n行,此时需要我们确定矩形的左右边界。可以注意到,对于这n行来说,当我们选定左右边界的时候,边界在各行中的位置是相同的。所以我们考虑把n行合并位1行,利用上面提到的题目的思想,确定矩形的数量。复杂度是O()。以下代码来自于官方题解。
class Solution {
private:
int subarraySum(vector<int> &nums, int k) {
unordered_map<int, int> mp;
mp[0] = 1;
int count = 0, pre = 0;
for (auto &x:nums) {
pre += x;
if (mp.find(pre - k) != mp.end()) {
count += mp[pre - k];
}
mp[pre]++;
}
return count;
}
public:
int numSubmatrixSumTarget(vector<vector<int>> &matrix, int target) {
int ans = 0;
int m = matrix.size(), n = matrix[0].size();
for (int i = 0; i < m; ++i) { // 枚举上边界
vector<int> sum(n);
for (int j = i; j < m; ++j) { // 枚举下边界
for (int c = 0; c < n; ++c) {
sum[c] += matrix[j][c]; // 更新每列的元素和
}
ans += subarraySum(sum, target);
}
}
return ans;
}
};
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/number-of-submatrices-that-sum-to-target/solution/yuan-su-he-wei-mu-biao-zhi-de-zi-ju-zhen-8ym2/
来源:力扣(LeetCode)