LeetCode: 5815. 扣分后的最大得分

给你一个 m x n 的整数矩阵 points (下标从 0 开始)。一开始你的得分为 0 ,你想最大化从矩阵中得到的分数。

你的得分方式为:每一行 中选取一个格子,选中坐标为 (r, c) 的格子会给你的总得分 增加 points[r][c] 。

然而,相邻行之间被选中的格子如果隔得太远,你会失去一些得分。对于相邻行 r 和 r + 1 (其中 0 <= r < m - 1),选中坐标为 (r, c1) 和 (r + 1, c2) 的格子,你的总得分 减少 abs(c1 - c2) 。

请你返回你能得到的 最大 得分。

abs(x) 定义为:

如果 x >= 0 ,那么值为 x 。
如果 x < 0 ,那么值为 -x 。
 

示例 1:

输入:points = [[1,2,3],[1,5,1],[3,1,1]]
输出:9
解释:
蓝色格子是最优方案选中的格子,坐标分别为 (0, 2),(1, 1) 和 (2, 0) 。
你的总得分增加 3 + 5 + 3 = 11 。
但是你的总得分需要扣除 abs(2 - 1) + abs(1 - 0) = 2 。
你的最终得分为 11 - 2 = 9 。
示例 2:

 

输入:points = [[1,5],[2,3],[4,2]]
输出:11
解释:
蓝色格子是最优方案选中的格子,坐标分别为 (0, 1),(1, 1) 和 (2, 0) 。
你的总得分增加 5 + 3 + 4 = 12 。
但是你的总得分需要扣除 abs(1 - 1) + abs(1 - 0) = 1 。
你的最终得分为 12 - 1 = 11 。
 

提示:

m == points.length
n == points[r].length
1 <= m, n <= 105
1 <= m * n <= 105
0 <= points[r][c] <= 105

分析:

       自己做的时候一开始思考能否用动规,脑子有点抽风,觉得并不满足最优子结构,遂明知在时间复杂度很高的情况下,仍尝试深搜。甚至联想了以前学习到的双向bfs,自己写了一个双向dfs的解法。果不其然,超时了。于是学习了其他人的解法,将思路和代码整理一下。

       用n表示行数,m表示列数,我们定义f[i][j]为前i行中,第i行选择第j列时的最大分数。因为最终的分数涉及上一行所选择的列数,所以我们对第i - 1行进行枚举。那么状态转移方程就是:

f[i][j] = points[i][j] + max\{f[i - 1][k] - abs(k - j)\}

       扫描完所有矩阵,复杂度为O(MN),而每次确定k时,复杂度为O(M),则总的复杂度为O(M^2N)。我们去掉绝对值可得:

f[i][j] = \left\{\begin{matrix} points[i][j] + max\{f[i - 1][k] - (j - k)\}, k \leq j \\ points[i][j] + max\{f[i - 1][k] - (k - j)\}, k > j \end{matrix}\right.

       我们进行化简:

f[i][j] = \left\{\begin{matrix} points[i][j] - j + max\{f[i - 1][k] + k\}, k \leq j \\ points[i][j] + j + max\{f[i - 1][k] - k\}, k > j \end{matrix}\right.

       由此可见,当我们在计算f[i][j]时,points[i][j]和j的值是确定的,需要分为两种情况讨论,k在j的左边或者右边(也包括在同一列),各自求出f[i - 1][k] - k和f[i - 1] + k的最大值,据此可得出f[i][j]的值。而求解f[i - 1][k] - k和f[i - 1] + k的过程,我们可以在计算f[i - 1][]的同时为下一行的计算进行预处理,那么可以在计算f[i][]时就可以把原本O(M)的复杂度降为O(1),所以总的时间复杂度为O(MN)。

       另外,f[i][]只与上一行f[i - 1][]的值有关,因此可以把二维压缩为一维。

class Solution {
public:
    long long maxPoints(vector<vector<int>>& points) {
        int n = points.size(), m = points[0].size();
        vector<long long> dp(points[0].begin(), points[0].end());
        for(int i = 1; i < n; i++){
            long long maxL = LONG_MIN, maxR = LONG_MIN;
            vector<long long> temp = dp;
            for(int j = 0; j < m; j++){
                maxL = max(maxL, temp[j] + j); //求f[i - 1][k] + k的最大值
                dp[j] = points[i][j] - j + maxL;
            }
            for(int j = m - 1; j >= 0; j--){
                maxR = max(maxR, temp[j] - j); //求f[i - 1][k] - k的最大值
                dp[j] = max(dp[j], points[i][j] + j + maxR); //dp[j]代表k在j左侧,另外一项表示在右侧
            }
        }
        return *max_element(dp.begin(), dp.end());
    }
};

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值