1.矩阵的行列式值
1.1定义
把一个方阵看作一个行列式,并对其按行列式的规则求值,这个值就称为所对应的行列式的值。
1.2函数实现
det(A):求方阵A所对应的行列式的值。
1.3代码演示
2.矩阵的秩
2.1定义
矩阵线性无关的行数或列数会称为矩阵的秩。
2.2函数实现
rank(A):求矩阵A的秩。
2.3代码演示
补充:
- 奇数阶魔方(幻方)矩阵秩为n,即奇数阶魔方矩阵是满秩矩阵。
- 一重偶数阶矩阵秩为n/2+2(n是2的倍数,但非4的倍数)。
- 双重偶数阶魔方秩均为3(阶数是4的倍数)。
3.矩阵的迹
3.1定义
矩阵的迹等于矩阵的对角线元素之和,也等于矩阵的特征值之和。
3.2函数实现
trace(A):求矩阵A的迹。
3.3代码演示
4.向量和矩阵的范数
4.1定义
矩阵或向量的范数用来度量矩阵或向量在某种意义下的长度。
4.2向量常用的三种范数
4.2.1向量范数的函数实现
- norm(V)或norm(V,2):计算向量V的2—范数
- norm(V,1):计算向量V的1—范数
- norm(V,inf):计算向量V的∞—范数
4.2.2向量范数的函数代码演示



4.3矩阵常用的三种范数
4.3.1矩阵的范数的实现
其函数和向量的范数的函数完全相同,调用也完全相同,不在赘述。
5.矩阵的条件数
5.1定义
矩阵A的条件数等于矩阵的范数与A的逆矩阵的范数的乘积。
5.2矩阵条件数的作用
条件数越接近于1,矩阵的性能越好,反之,矩阵的性能越差。
5.3计算矩阵A的三种条件数的函数
函数 | 作用 |
cond(A,1) | 计算A的1—范数下的条件数 |
cond(A)或cond(A,2) | 计算A的2—范数下的条件数 |
cond(A,inf) | 计算A的∞—范数下的条件数 |
5.4代码演示

