# -*- coding: utf-8 -*-
"""
熵定义为信息的期望值。
熵:表示随机变量的不确定性。
条件熵:在一个条件下,随机变量的不确定性。
信息增益:熵 - 条件熵
在一个条件下,信息不确定性减少的程度!
如果选择一个特征后,信息增益最大(信息不确定性减少的程度最大),那么我们就选取这个特征。
"""
from math import log
import operator
"""
函数说明:创建测试集
Parameter:
无
Returns:
dataSet 数据集
Labels 分类属性
"""
def createDataSet():
dataSet = [[0, 0, 0, 0, 'no'],
[0, 0, 0, 1, 'no'],
[0, 1, 0, 1, 'yes'],
[0, 1, 1, 0, 'yes'],
[0, 0, 0, 0, 'no'],
[1, 0, 0, 0, 'no'],
[1, 0, 0, 1, 'no'],
[1, 1, 1, 1, 'yes'],
[1, 0, 1, 2, 'yes'],
[1, 0, 1, 2, 'yes'],
[2, 0, 1, 2, 'yes'],
[2, 0, 1, 1, 'yes'],
[2, 1, 0, 1, 'yes'],
[2, 1, 0, 2, 'yes'],
[2, 0, 0, 0, 'no']]
#Labels = ['不放贷', '放贷']
Labels = ['年龄', '有工作', '有自己的房子', '信贷情况']
return dataSet, Labels
"""
函数说明:计算给定数据集的经验熵(香农熵)
Parameters:
dataSet 数据集
Returns:
shannonEnt 经验熵
"""
def calcShannonEnt(dataSet):
#返回数据集的行数
numEntirs = len(dataSet)
#保存每个标签出现次数的字典
LabelCounts = {}
#统计
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in LabelCounts.keys():
#初始化值
LabelCounts[currentLabel] = 0
LabelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in LabelCounts:
#该标签对应的概率
prob = float(LabelCounts[key]) / numEntirs
#
shannonEnt -= prob * log(prob, 2)
return shannonEnt
"""
函数说明:按照给定特征划分数据集
Parameters:
dataSet 待划分的数据集
axis 划分数据集的特征
value 需要返回的特征值
Returns:
retDataSet 返回的数据集列表
"""
def splitDataSet(dataSet, axis, value):
#返回的数据集列表
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
#去掉axis特征
reducedFeatVec = featVec[:axis]
#reducedFeatVec = []
#将符合条件的添加到返回的数据集
reducedFeatVec.extend(featVec[axis+1 : ])
retDataSet.append(reducedFeatVec)
return retDataSet
"""
函数说明:选择最优特征
Paramaters:
dataSet
Returns:
beatFeature 信息增益最优的特征的索引值
"""
def chooseBestFeatureToSplit(dataSet):
#特征数量
numFeatures = len(dataSet[0]) - 1
#计算数据集的香农熵
baseEntropy = calcShannonEnt(dataSet)
#信息增益
bestInfoGain = 0.0
#最优特征的索引值
bestFeature = -1
for i in range(numFeatures):
#获取dataSet的第i个所有特征
#将dataSet中的数据先按行依次放入example中,
#然后取得example中的example[i]元素,放入列表featList中
#相当于取所有行的第一个值
#之所以这样取,是因为dataSet是个列表,而不是矩阵,矩阵取第一列有方法
featList = [ example[i] for example in dataSet]
#创建集合set,元素不可重复
uniqueVals = set(featList)
#经验条件熵
newEntropy = 0.0
#计算信息增益
for value in uniqueVals:
#subDataSet是划分后的子集
subDataSet = splitDataSet(dataSet, i, value)
#计算子集的概率
prob = len(subDataSet) / float(len(dataSet))
#计算经验条件熵
newEntropy += prob * calcShannonEnt(subDataSet)
#信息增益
infoGain = baseEntropy - newEntropy
#打印每个特征的信息增益
#print("第%d个特征的增益为:%.3f" % (i, infoGain))
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature
"""
函数说明:统计classList中出现次数最多的元素(类标签)
Parameters:
classList 类标签列表
Returns:
sortedClassCount[0][0] 出现次数最多的元素(类标签)
"""
def majorityCnt(classList):
classCount = {}
#统计classList中每个元素出现的次数
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
#根据字典的值降序排序
sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True)
return sortedClassCount[0][0]
"""
函数说明:创建决策树
Parameters:
dataSet 训练集
Labels 分类标签
featLabels 存储选择的最优特征标签
Returns:
myTree 决策树
"""
def createTree(dataSet, Labels, featLabels):
#取dataSet每行的最后一列的元素构成新的列表
#相当于取dataSet最后一列的值
classList = [example[-1] for example in dataSet]
#若类别完全相同就停止划分
if classList.count(classList[0]) == len(classList):
return classList[0]
#遍历完所有特征值返回出现次数最多的标签
if len(dataSet[0]) == 1 or len(Labels) == 0:
return majorityCnt(classList)
#选择最优特征值的索引
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = Labels[bestFeat]
featLabels.append(bestFeatLabel)
#生成决策树
myTree = {bestFeatLabel:{}}
#删除已经使用的特征标签
del(Labels[bestFeat])
#得到训练集中所有最优特征值的属性值
featValues = [example[bestFeat] for example in dataSet]
#去除重复的属性值
uniqueVals = set(featValues)
#遍历特征,创建决策树
for value in uniqueVals:
myTree[bestFeatLabel][value] = createTree(
splitDataSet(dataSet, bestFeat, value),
Labels, featLabels)
return myTree
"""
函数说明:使用决策树分类
Parameters:
imputTree 已经生成的决策树
featLabels 存储选择的最优特征标签
testVec 测试集 顺序对应最优特征标签
Returns:
classLabel 分类结果
"""
def classify(inputTree, featLabels, testVec):
#获取决策树节点
firstStr = next(iter(inputTree))
#下一个字典
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
for key in secondDict.keys():
if testVec[featIndex] == key:
if type(secondDict[key]).__name__ == 'dict':
classLabel = classify(secondDict[key], featLabels, testVec)
else:
classLabel = secondDict[key]
return classLabel
if __name__ == '__main__':
dataSet, Labels = createDataSet()
featLabels = []
myTree = createTree(dataSet, Labels, featLabels)
testVec = [0, 1]
result = classify(myTree, featLabels, testVec)
if result == 'yes':
print('放贷')
else:
print('不放贷')