使用随机森林做特征选择

使用随机森林训练模型

from sklearn.ensemble import RandomForestClassifier
feat_lables = trainx.columns
forest = RandomForestClassifier(n_estimators=10000, random_state=0,n_jobs=1)
forest.fit(trainx, trainy)
importance = forest.feature_importances_
imp_result = np.argsort(importance)[::-1]
imp_result [0:5]

输出特征排序

for i in range(trainx.shape[1]):
	print("%2d. %-*s %f"%(f+1, 30, feat_labels[f], importance[imp_result[f]]) )

这里写图片描述

特征重要性绘图

plt.title('Feature Importance')
plt.bar(range(trainx.shape[1]), importances[indices], color='lightblue', align='center')
plt.xticks(range(trainx.shape[1]), feat_labels, rotation=90)
plt.xlim([-1, trainx.shape[1]])
plt.tight_layout()
plt.show()

这里写图片描述

代码参考

利用随机森林对特征重要性进行评估

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值