自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 NLP实战练手项目之 Transformer 架构的机器翻译(JParaCrawl汉语数据集)

Transformer是一种深度学习模型,它通过自注意力机制和位置编码,实现了对序列数据的处理。在机器翻译任务中,Transformer模型将输入的源语言文本序列作为输入,通过编码器和解码器两个阶段,生成目标语言的文本序列。在编码阶段,Transformer模型将源语言文本序列中的每个单词都映射到一个向量表示,并通过自注意力机制计算出每个单词的权重。然后,通过位置编码将单词的位置信息编码为向量,与单词向量相加得到最终的表示。

2024-06-29 17:42:18 1664

原创 NLP实战练手项目之 机器翻译(使用Tatoeba Project英法数据集)

机器翻译的基本模型是“序列到序列”模型(Seq2Seq),它是一种通用自然语言模型,可以用于多种任务,例如机器翻译、文本生成和对话生成等。在机器翻译中,Seq2Seq模型主要包括两个部分:编码器和解码器。编码器将源语言文本逐词转换成一种内部表示(或称为“向量”),解码器则将该向量逐词解码成目标语言文本。具体而言,编码器会采用采用循环(RNN)或长短时记忆网络(LSTM)等模型,将源语言文本的每个词汇转换为向量表示。这些向量可以被视为该词汇在语言中的“特征”,从而将文本转换为一组向量的序列。

2024-06-29 16:26:48 2011

原创 NLP实战练手项目之 姓氏分类系统

先把MLP模型定义出来才能训练啦# 第一个线性层将输入向量映射到中间向量,并对该向量应用非线性。第二线性层将中间向量映射到预测向量。"""Args:"""Args:Returns:""""""Args:"""# 定义一个卷积神经网络序列,用于特征提取# 第一层1D卷积,用于捕捉局部特征nn.ELU(), # 使用ELU激活函数增加非线性# 第二层1D卷积,步长为2,开始减少空间维度nn.ELU(),# 第三层1D卷积,进一步减少空间维度nn.ELU(),

2024-06-29 00:23:07 1674 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除