LC振荡器电路原理分析

链接1:高频课程设计_LC振荡器_克拉泼 - 百度文库 (baidu.com)

链接2:(最新整理)克拉泼改进型电容三点式振荡器 (renrendoc.com)

链接3:https://www.cnblogs.com/xiaobaibai2021/p/15716934.html

模拟电路-p417~418

链接4:山东大学高频电子线路实验三 正弦波振荡器实验详解-腾讯云开发者社区-腾讯云

正弦波振荡器背景:

概述

        正弦波振荡电路是在没有外加输入信号的情况下,依靠电路自激振荡而产生正弦波输出电压的电路。广泛地应用于两侧、遥控、通讯、自动控制、热处理和超声波电焊等加工设备之中,也作为模拟电子电路的测试信号。下面介绍一下LC正弦波振荡电路的工作原理,并通过multisim软件进行仿真验证。

LC正弦波振荡电路的工作原理

        正弦波振荡电路需由以下四个部分组成:

  1. 放大电路:保证电路能够有从起振到动态平衡的过程,使电路获得一定幅值的输出量,实现能量的控制;
  2. 选频网络:确定电路的振荡频率,使电路产生单一频率的振荡,即确保电路产生正弦波振荡。
  3. 正反馈网络:引入正反馈,使放大电路的输入信号等于反馈信号;
  4. 稳幅环节:也就是非线性环节,作用是使输出信号幅值稳定。

        一般以1MHz振荡频率为界,低于1MHz的振荡频率,使用RC正弦波振荡电路,高于1MHz的振荡频率,使用LC正弦波振荡电路:

图1 LC选频电路

         信号频率较低时,电容阻抗很大,网络呈感性;信号频率较高时,电感的感性很大,网络呈容性;当f=f0时,网络呈纯阻性,且阻抗无穷大。此时电路产生谐振,相位差为0。

电路导纳:

Y=\frac{R}{R^{2}+(\omega L)^{2}} + j\left [ \omega C-\frac{\omega L}{R^{2}+(\omega L)^{2}} \right ]

虚部为0,Q=\frac{\omega_{0 }L}{R}\gg 1时:

\omega _{0}\approx \frac{1}{\sqrt{LC}}

电容反馈式振荡电路

        也称之为电容三点式电路。将晶体管的三个电极,分别与三个电抗性原件相连接,形成三个接点。

图2 电容三点式电路

        当LC电路的Q值远大于1时:

f_{0}\approx \frac{1}{2\pi \sqrt{LC_{x}}}

        其中Cx为C1与C2的并联电容。反馈系数:

\left | \dot{F} \right |=\left | \frac{\dot{U_{f}}}{\dot{U_{0}}} \right |\approx \frac{C_{1}}{C_{2}}

        电压放大倍数:

\left | \dot{A_{u}} \right |=\left | \frac{\dot{U_{0}}}{\dot{U_{i}}} \right |= \beta \frac{​{R}'_{L}}{r_{be}}

        其中:

{R}'_{L}= R_{c}\parallel \frac{R_{i}}{\left | \dot{F} \right |^{2}}

        反馈系数与C1/C2成正比,增大C1/C2,则反馈系数增大,利于电路起振,但是会使R‘L减小,不利于起振。

图3 电容三点式电路仿真图

        调节C2值,观察起振速度、幅值及频率。

 图4 C2为0.2nF时,起振频率为4.12MHz,幅值为0.8V

 图5 C2为0.4nF时,起振频率为3.36MHz,幅值为1.46V

 图6 C2为0.5nF时,起振频率为3.18MHz,幅值为1.46V

        为了调节f0,需减小C1、C2和L值,但是减小到一定程度,晶体管结间电容将影响振荡频率。因此可以在L所在之路串联一个小的电容C,且C<<C1,C2。总电容≈C,电路振荡频率:

f_{0}\approx \frac{1}{2\pi \sqrt{LC_{}}}

        振荡频率与C1、C2无关,也几乎与结间电容和杂散电容无关。电路图如下:

图7 改进型克拉波电路

        即为改进型克拉波电路。该电路反馈系数取决于C1与C2的比值,谐振频率取决于C与L。因此,改变振荡频率可不影响反馈系数,振荡幅值比较稳定,但是C不能太小,否则会导致停振。

 图7 改进型克拉波电路仿真图

石英晶体谐振器

链接4:串/并联谐振电路的仿真分析-电子发烧友网

        石英晶振具有非常稳定的固有频率。对于振荡频率的稳定性要求高的电路,应选用石英晶体作为选频网络。

        石英晶体等效电路见下图。不振动时,等效为一个平板电容C0,称为静态电容。晶体内部振动时,机械振动的惯性等效为电感L,晶体由于压电效应带来的厚度变化带等效为电容Cs,晶体振动会产生热损耗等效为电阻R。

        支路阻抗:

Z=R+j\left ( \omega L-\frac{1}{\omega C} \right )

\left | Z \right |=\sqrt{R^{2}+\left ( \omega L-\frac{1}{\omega C} \right )^{2}}

        当等效电路中L、R、C支路产生串联谐振时,该支路呈纯阻性,等效电阻为R,谐振频率:

fs=\frac{1}{2\pi \sqrt{LC}}

        整个网络的电抗等于R并联C0的容抗,因R<<wC0,因此近似认为石英晶体呈纯阻性,等效电阻为R。

        当f<fs时,C0与C电抗较大,石英晶体呈现容性。

        当f=fs时,C0电抗较小,石英晶体呈现纯阻性。

        当fs<f<fp时,支路呈感性,石英晶体呈现感性。

        当f=fp时,支路呈感性上升,与C0产生并联谐振,石英晶体呈现纯阻性,谐振频率:

fp=\frac{1}{2\pi \sqrt{L\frac{CC0}{C+C0}}}=fs\sqrt{1+\frac{C}{C0}}

        其中C0远大于C,因此fp≈fs。

        当f>fp时,电抗主要取决于C0,石英晶体呈容性。

 图8 石英晶振的等效电路图HC-49/U_5MHz对应的Rs\Cs\Ls\C0参数

 图9 等效电路图(上)及晶振电路(下)阻抗分析

       根据石英晶体的特性,因此石英晶体可以工作在两种状态,一种为串联谐振,石英晶体工作在fs附近,表现为纯阻态;一种为并联谐振,石英晶体工作在fp附近,表现为电感。

并联谐振电路

 图10 并联谐振

LC振荡电路图11 振荡结果 

总结

        本文使用multisim分析了LC振荡器三点电容式振荡电路及优化后的电容式振荡电路,分析了通过改变电容调节反馈系数进而实现调频的结果。同时,简单介绍了石英晶振的工作原理,并使用仿真了石英晶振的并联谐振电路。在仿真过程中发现即使按照书本进行参数设置也不容易起振:1.可以增加一个开关,开关启动瞬间会产生一些扰动,产生不同频段的信号,从而起振。2.如果增加开关无法解决,可以试着调节静态工作点来让电路完成起振。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值