POJ2104平方分割(线段树)

题目链接: http://poj.org/problem?id=2104

题意: 给出一个区间[l,r]和一个k,要查询 a(l),a(l+1), … a(r)中,按升序排列下第k个数。
例如数列:1 5 2 6 3 7 4
要查询[2, 5]中第 3个数, 即 5 2 6 3 按升序排列 2 3 5 6的第 3个, 即为5。

很朴素的想法就是每次查询的时候都把要查询的区间排个序,然后取出第k个,但这种做法时间复杂度太高(因为查询次数高达5000次)。最坏情况下m *n *logn。

另一种做法便是采用二分加上线段树的做法, 要求升序排列中第k个数,换一句话说就是要找到一个x,使其在此排列中有k-1个不超过x的数。首先查找x这个使用二分即可,那线段树有何作用呢?
由线段树的性质可知,每个结点表示一个区间,若每个区间都是有序的,那我们查询一个区间的时候便可以把它分解成若干个区间,在每一个区间中查找不超过x的数,最后累加起来,若个数超过k,则说明取得这个x太大,需要再小一点,若< k,则需再大一点,若=k,不一定是最优的,可能还可以更小。

再线段树上如何快速求得不超过x的个数是关键,这里可以采用在合并子节点的时候排序,使得线段树每个区间都有序(类似于归并排序)。这样在查找的时候便可以直接使用二分搜索找下界即可。
时间复杂度为O(nlogn+mlog^3 n) ,nlogn为建树的时间。

这里写图片描述

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <queue>
#include <vector>
#include <cmath>
using namespace std;
#define fre freopen("/Users/user/Desktop/in.txt","r",stdin);
#define CLR(s) memset(s,0,sizeof(s));
#define all(x) x.begin(), x.end()
const int maxn = 300000+10;

int A[maxn], nums[maxn], I[maxn], J[maxn], K[maxn];
vector <int> dat[maxn];
int Y1 = 0,y2 = 0;
int N,M;

void init(int o, int L,int R){
    if(R - L == 1){
        dat[o].push_back(A[L]);
    }
    else{
        int M = L + (R-L)/2; // 采用左闭右开
        int lc = o*2, rc = o*2+1;
         init(lc, L,M);
         init(rc , M ,R);
        dat[o].resize(R-L);
        // 这里一定要分配刚刚好的空间,否则的话查找上界会把0也给记录进去。
        merge(all(dat[lc]), all(dat[rc]),dat[o].begin()); //STL的有序合并
    }
}
int query(int o,int x, int L, int R){
    int res = 0;
    if(y2 <= L || Y1 >= R)
        return 0;
    if(Y1 <= L && y2 >= R){
        res += upper_bound(all(dat[o]), x) - dat[o].begin(); //查找不超过x的上界值
    }
    else{
        int lc = o*2, rc = o*2+1;
        int M = L+(R-L)/2;
        res += query(lc, x, L,M);
         res += query(rc, x, M, R);
    }
    return res;
}

void solve(){
    sort(nums, nums+N);
    //在nums上做二分查找x
    init(1,0,N); // 建树
    for(int i = 0; i < M; ++i){
        Y1 = I[i]; y2 = J[i]+1; //左闭右开
        int k = K[i];
        int lb = 0, rb = N;
        while(lb < rb){
            int M = lb+(rb-lb)/2;
            int cnt = query(1,nums[M], 0,N);
            if(cnt >= k) rb = M;
            else
                lb = M+1;
        }
        printf("%d\n", nums[lb]);
    }
}
int main(){
   // fre;
    scanf("%d%d", &N,&M);
    for(int i = 0; i < N; ++i){
        scanf("%d", &A[i]);
        nums[i] = A[i];
    }
    for(int i = 0; i < M; ++i){
        scanf("%d%d%d", &I[i], &J[i], &K[i]);
        I[i]--; J[i]--;
    }
    solve();
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值