codeforce 1113C Sasha and a Bit of Relax (异或规律)

https://codeforces.com/contest/1113/problem/C

题意

给一段序列,求出满足下列条件的区间的个数。

  1. [L,R]长度为偶数
  2. a L ⊕ a L + 1 ⊕ a L + 2 ⋯ ⊕ a m i d = a m i d + 1 ⊕ a m i d + 2 ⊕ ⋯ ⊕ a R a_L ⊕ a_{L+1}⊕a_{L+2} \dots⊕a_{mid} =a_{mid+1}⊕a_{mid+2}⊕\dots⊕a_R aLaL+1aL+2amid=amid+1amid+2aR

题解

如果a⊕b=c⊕d,那么(a⊕b)⊕(c⊕d)=0,即只有相等的值异或才为0。
异或也有前缀异或,[L,R]的异或值为 p r e R ⊕ p r e L − 1 pre_{R}⊕pre_{L-1} preRpreL1
问题转化为 p r e R ⊕ p r e L − 1 = 0 pre_{R}⊕pre_{L-1}=0 preRpreL1=0,即 p r e R = p r e L − 1 pre_{R}=pre_{L-1} preR=preL1
所以可以在计算前缀积的时候就统计出 p r e i pre_{i} prei出现的次数,只要两个相等的值就可以组成一个符合条件的区间,因为区间长度要是偶数,所以可以分奇偶来统计。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 3e5+5;
const int mod = 1e9+7;

int a[maxn],pre[maxn];
map<int,int> cnt[2];
int main() {
    int n;
    scanf("%d", &n);
    cnt[0][0] = 1;
    int sum=0;
    long long ans = 0;
    for(int i = 1; i <= n; ++i) {
        scanf("%d", &a[i]);
        sum^=a[i];
        ans += cnt[i%2][sum];
        cnt[i%2][sum]++;
    }
    cout << ans << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值