朴素贝叶斯学习实例【机器学习】

这篇博客介绍了如何使用Python的sklearn库进行朴素贝叶斯分类。内容包括题目要求、数据预处理(如数据替换和OneHotEncoder的应用)、实验代码实现(数据读取和贝叶斯分类)以及实验总结,指出由于样本量小,未进行数据集划分,并解释了使用OneHotEncoder的原因。
摘要由CSDN通过智能技术生成

朴素贝叶斯学习实例【机器学习】



一、题目要求

请编写代码(使用sklearn),预测D15的结果
在这里插入图片描述


二、数据预处理

1.数据替换

假设:Outlook:{sunny:0,overcast:1,rain:2}
Temperature:{hot:0,mild:1,cool:2}
Humidity:{high:0,normal:1}
Wind:{weak:0,strong:1}
PlayTennis:{no:0,yes:1}

2.OneHotEncoder的使用

它可以实现将分类特征的每个元素转化为一个可以用来计算的值。

from sklearn.preprocessing import OneHotEncoder
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值