Day4-字符串格式化《21天0基础掌握Python编程(每天半小时)》 文章目录1、占位符(%)2、format方法 字符串格式化是指使用特定方法将指定的字符串转换为想要输出的格式。常用格式化方法如下,分别为占位符(%)和format函数方式。1、占位符(%)2、format方法...
VMware安装教程 文章目录VMware下载VMware安装VMware下载官网VMware安装1、打开下载好的 exe 文件, 即可开始安装。2、勾选协议,下一步3、勾选增强型键盘驱动程序 ,此功能可更好地处理国际键盘和带有额外按键的键盘。默认安装到C盘,可修改!4、默认下一步5、默认下一步6、点击安装7、耐心等待8、许可证ZF3R0-FHED2-M80TY-8QYGC-NPKYF9、大功告成10、安装后要求重启系统,重启后进入软件。依次点击导航栏中的 帮助 -> 关于
朴素贝叶斯案例解析 文章目录什么是贝叶斯贝叶斯算例什么是贝叶斯贝叶斯定理由英国数学家贝叶斯 ( Thomas Bayes 1702-1761 ) 发展,用来描述两个条件概率之间的关系,如下:P(A∣B)=P(B∣A)P(A)P(B)P(A|B) = \frac{P(B|A)P(A)}{P(B)}P(A∣B)=P(B)P(B∣A)P(A)P(A):事件A发生的概率P(B):事件B发生的概率P(A|B):事件B发生的条件下(B已经发生),事件A发生的概率P(B|A):事件A发生的条件下(A已经发生),事件B发生的概
XGBoost VS GBDT 文章目录算法介绍算法差异算法介绍XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中并取得了不错的成绩。说到XGBoost,不得不提GBDT(Gradient Boosting Decision Tree)。因为XGBoost本质上还是一个GBDT,但是力争把速度和效率发挥到极致,所以叫X (Extreme) GBoosted。两者都是boosting方法。算法差异其一:传统GBDT以C
机器学习模型评价指标ROC-AUC 文章目录混淆矩阵真正率假正率ROC-AUC理想情况混淆矩阵首先,在试图弄懂ROC和AUC概念之前,你一定要彻底理解混淆矩阵的定义!混淆矩阵中有着Positive、Negative、True、False的概念,其意义如下:称预测类别为1的为Positive(阳性)预测类别为0的为Negative(阴性)预测正确的为True(真)预测错误的为False(伪)。对上述概念进行组合,就产生了如下的混淆矩阵:真正率假正率然后,由此引出True Positive Rate(真正率)、False
Xgboost分类树参数详解 文章目录模型参数常规参数学习任务参数模型参数n_estimatores: 总共迭代的次数,即决策树的个数early_stopping_rounds: 在验证集上,当连续n次迭代,分数没有提高后,提前终止训练。防止overfitting。max_depth: 树的深度,默认值为6,典型值3-10。值越大,越容易过拟合;值越小,越容易欠拟合。min_child_weight: 默认值为1,。值越大,越容易欠拟合;值越小,越容易过拟合(值较大时,避免模型学习到局部的特殊样
1.8、NumPy使用 文章目录NumPy介绍NumPy创建NumPy数据类型NumPy运算NumPy索引切片NumPy高级索引NumPy形状改变NumPy广播NumPy线性代数NumPy介绍NumPy 是一个运行速度非常快的数学库,主要用于数组计算:一个强大的N维数组对象 ndarray广播功能函数整合 C/C++/Fortran 代码的工具线性代数、傅里叶变换、随机数生成等功能安装指令:pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
机器学习评价指标 文章目录混淆矩阵准确率真正率假正率精确率召回率F-measure(F1)值混淆矩阵True Positive (真正, TP)被模型预测为正的正样本;True Negative(真负 , TN)被模型预测为负的负样本 ;False Positive (假正, FP)被模型预测为正的负样本;False Negative(假负 , FN)被模型预测为负的正样本;准确率准确率(Accuracy)。顾名思义,就是所有的预测正确(正类负类)的占总的比重accuracy=TP+TNTP+FN+FP+T