hdu1024 Max Sum Plus Plus

154 篇文章 1 订阅
26 篇文章 0 订阅

Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 18131    Accepted Submission(s): 5931


Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
 

Input
Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 ... S n.
Process to the end of file.
 

Output
Output the maximal summation described above in one line.
 

Sample Input
  
  
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 

Sample Output
  
  
6 8
http://www.cnblogs.com/kuangbin/archive/2011/08/04/2127085.html
自己看吧。
#include <stdio.h>
#include <string.h>
#define INF 0x7fffffff
#define MAX 1000100

int dp[MAX] , num[MAX] , preMax[MAX];

int max(int a , int b)
{
	return a>b?a:b ;
}

int main()
{
	int m , n;
	while(~scanf("%d%d",&m,&n))
	{
		for(int i = 1 ; i <= n ; ++i)
		{
			scanf("%d",&num[i]) ;
			preMax[i] = 0 ;
			dp[i] = 0 ;
		}
		dp[0] = 0 ;
		preMax[0] = 0 ;
		int mm ;
		for(int i = 1 ; i <= m ; ++i)
		{
			mm = -INF;
			for(int j = i ; j <= n ; ++j)
			{
				dp[j] = max(dp[j-1]+num[j],preMax[j-1]+num[j]) ;
				preMax[j-1] = mm ;
				mm = max(dp[j],mm) ;
			}
		}
		printf("%d\n",mm) ;
	}
	return 0 ;
}


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值