【刷题】[LeetCode#11] 双指针法求解盛最多水容器问题

题目链接:11. 盛最多水的容器

题目

给你 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai)(i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2
图示
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49

解法

双指针法,左指针从最左侧开始,右指针从最右侧开始,若左侧值小则左指针右移一格,若右指针小则右指针左移一格,直到两者相遇为止。每次移动计算水量取最大值,时间复杂度O(n)

证明

一开始想到了这种做法但对其正确性有些疑虑,故在此处给出解法的证明。
设取到真实最大值时,左指针的位置应当为l_true,右指针的位置应当为r_true,两个指针必有一者先到达理论上的"true"位置,不妨假定左指针先到。此时左指针在l_true,右指针在rr > r_true。下用反证法证此时必有任意k > r_true && k <= r,满足height[k] < height[l_true],从而能求得最大值。
由题意,水量最大值不超过(r_true - l_true) * height[l_true]。若某个k > r_true && k <= r满足height[k] > height[l_true]则此处的水量为(k - l_true) * height[l_true],又因为k > r_true,则此处水量大于(r_true - l_true * height[l_true]),矛盾,故不可能存在这样的k,结论证毕。
综上,算法的正确性得证。

代码

Java:

class Solution {
    public int maxArea(int[] height) {
        if (height.length <= 1) {
            return 0;
        }
        int left = 0;
        int right = height.length - 1;
        int max = 0;
        while (left < right) {
            if (height[left] <= height[right]) {
                max = Math.max(max, height[left] * (right - left));
                left++;
            } else {
                max = Math.max(max, height[right] * (right - left));
                right--;
            }
        }
        return max;
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值