题目链接:11. 盛最多水的容器
题目
给你 n
个非负整数 a1,a2,...,an
,每个数代表坐标中的一个点 (i, ai)
。在坐标内画 n
条垂直线,垂直线 i
的两个端点分别为 (i, ai)
和 (i, 0)
。找出其中的两条线,使得它们与 x
轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n
的值至少为 2
。
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]
。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49
。
解法
双指针法,左指针从最左侧开始,右指针从最右侧开始,若左侧值小则左指针右移一格,若右指针小则右指针左移一格,直到两者相遇为止。每次移动计算水量取最大值,时间复杂度O(n)
。
证明
一开始想到了这种做法但对其正确性有些疑虑,故在此处给出解法的证明。
设取到真实最大值时,左指针的位置应当为l_true
,右指针的位置应当为r_true
,两个指针必有一者先到达理论上的"true"
位置,不妨假定左指针先到。此时左指针在l_true
,右指针在r
且r > r_true
。下用反证法证此时必有任意k > r_true && k <= r
,满足height[k] < height[l_true]
,从而能求得最大值。
由题意,水量最大值不超过(r_true - l_true) * height[l_true]
。若某个k > r_true && k <= r
满足height[k] > height[l_true]
则此处的水量为(k - l_true) * height[l_true]
,又因为k > r_true
,则此处水量大于(r_true - l_true * height[l_true])
,矛盾,故不可能存在这样的k
,结论证毕。
综上,算法的正确性得证。
代码
Java:
class Solution {
public int maxArea(int[] height) {
if (height.length <= 1) {
return 0;
}
int left = 0;
int right = height.length - 1;
int max = 0;
while (left < right) {
if (height[left] <= height[right]) {
max = Math.max(max, height[left] * (right - left));
left++;
} else {
max = Math.max(max, height[right] * (right - left));
right--;
}
}
return max;
}
}