题目来源于leetcode,解法和思路仅代表个人观点。传送门。
难度:困难
时间:2h-
题目
在仅包含 0 和 1 的数组 A 中,一次 K 位翻转包括选择一个长度为 K 的(连续)子数组,同时将子数组中的每个 0 更改为 1,而每个 1 更改为 0。
返回所需的 K 位翻转的最小次数,以便数组没有值为 0 的元素。如果不可能,返回 -1。
示例 1:
输入:A = [0,1,0], K = 1
输出:2
解释:先翻转 A[0],然后翻转 A[2]。
示例 2:
输入:A = [1,1,0], K = 2
输出:-1
解释:无论我们怎样翻转大小为 2 的子数组,我们都不能使数组变为 [1,1,1]。
示例 3:
输入:A = [0,0,0,1,0,1,1,0], K = 3
输出:3
解释:
翻转 A[0],A[1],A[2]: A变成 [1,1,1,1,0,1,1,0]
翻转 A[4],A[5],A[6]: A变成 [1,1,1,1,1,0,0,0]
翻转 A[5],A[6],A[7]: A变成 [1,1,1,1,1,1,1,1]
提示:
1 <= A.length <= 30000
1 <= K <= A.length
思路&代码
贪心翻转
这里有点贪心的味道。
思考这个case
[1,1,1,0,x,x,x,...]
3
要使的翻转次数最少,实际上只需要翻转不多余就行了
[1,1,1,1,0,x,x,x,...]
↑ ↑
left right
left指针指向0,left指针左边全部都是1,一定是翻转left指针右边的一段,才能使得总的翻转次数最少。
为什么呢?思考反例,
[1,1,1,1,0,x,x,x,...] => [1,1,0,0,1,x,x,x,...] => [0,0,1,0,1,x,x,x,...]
↑ ↑ ↑ ↑
right left right left
如果翻转left指针右边这一段,就会使得出现没有必要的翻转,这个翻转导致把之前已经翻转好的数组给打乱了。
假设A[0~left)=1,那么只需要考虑A[left,n)长度的数组即可,相当于输入规模下降了。
那么我们每次贪心地选择从左到右的第一个0进行翻转。确保left指针左边的元素全为1,当left指针指向n的时候,我们就已经翻转完了所有元素。
特别地,因为一次翻转,需要翻转[left,left+K)长度的元素。如果某次翻转left+K > n,那么此次翻转失败,整个数组不可能全部翻转为1,return -1。
class Solution {
public:
void flip(vector<int>& A,int left,int right){
for(int i=left;i<=right;i++){
if(A[i] == 0){
A[i] = 1;
}else{
A[i] = 0;
}
}
}
int minKBitFlips(vector<int>& A, int K) {
int left = 0;
int right = left + K -1;
//数组长度
int n = A.size();
int ans = 0;
/*
* 找到第一个为0的位置,反转k位,果然超时
* 时间复杂度为O(nk),空间复杂度为O(1)
*/
for(int i=0;i<n;i++){
if(A[i] == 1){
continue;
}
if(i+K-1 >= n){
return -1;
}
flip(A,i,i+K-1);
ans++;
}
return ans;
}
};
时间复杂度: O(nK)。n为数组长度。K为翻转一次的长度。
空间复杂度: O(1)。
提交,超时了。很显然,leetcode困难题没有这么容易给过。
翻转优化
优化的思路
优化一下。
超时优化有两种思路。
- 沿着刚才的思路,看着时间复杂度继续优化。
- 换个思路再做一次。
我这里觉得刚才那个贪心思路很不错,所以打算继续往下优化。
时间复杂度的考虑
首先观察时间复杂度:O(nk),接近n²,其实也不是很慢,如果继续往下的话就是O(nlogn)和O(n),因为肯定需要遍历完数组中的所有元素,时间复杂度不可能小于O(n)。
考虑O(nlogn),熟悉的算法有二分,排序等。
这里排序没有用,二分也没有用。
考虑O(n),那么我们只能遍历一次数组。
我这里觉得大概率是O(n)的算法,所以接着往下思考。
空间换时间的考虑
一般来说,想要时间复杂度更低,那就用空间换时间。而且,刚才超时的算法,空间复杂度是O(1),那就很大可能是空间换时间优化的方向。
具体地考虑
上面的考虑,只能提供一个大概的方向,想要做出来,还是需要具体问题具体分析。
到底算法慢在哪?
我们每次都会找到第一个0,对元素A[left]会翻转[left,left+K)长度的区间,但是实际上,翻转数组并不需要执行,我们只需要翻转我们需要找的目标即可。即,这次找0,下次找1,下次找0。
下面的例子已经翻转了两次。第一次翻转[left,right],第二次翻转[next_left,next_right]。
K=4, right = left+K-1
next_left next_right next_left next_right next_left next_right
↓ ↓ ↓ ↓ ↓ ↓
[...,1,0,0,1,1,1,1,...] => [...,1,1,1,0,0,1,1,...] = [...,1,1,1,1,1,0,0,...]
↑ ↑ ↑ ↑ ↑ ↑
left right left right left right
该例子中,如何寻找目标?
- 找到第一个0,翻转
- 在[left,right]之间找1,在(right,n)之间找0,翻转
- 在[next_left,right]之间找0,在(right,next_right]之间找1,在(next_right,n)之间找0,翻转
如上例子分析后,可以发现,我们寻找的目标每次翻转的时候,都是在上一次翻转的分界线处。
这样,我们可以定义一个翻转分界线的数组flipFlag
,记录每次翻转的right分界线。每次遍历的指针到达分界线处时,我们就翻转我们寻找的目标。
class Solution {
public:
int minKBitFlips(vector<int>& A, int K) {
int left = 0;
int right = left + K -1;
//数组长度
int n = A.size();
int ans = 0;
/*
* 虚拟反转,空间换时间
* 使用标记数组,指针碰上标记数组后,寻找的数flag,翻转
* 时间复杂度为O(n),空间复杂度为O(n)
*/
//0表示不翻转,1表示翻转
vector<int> flipFlags(n,0);
//下一个寻找的数
int flag = 1;
for(int i=0;i<n;i++){
if(flipFlags[i] == 1){
//翻转flag
flag = flag==0?1:0;
}
//跳过无用的
if(A[i]==flag){
continue;
}
//右边界
right = i + K;
//如果当前需要翻转的区间 大于 数组了 说明一定不能完成翻转
if(right > n){
return -1;
}
//翻转一次
flag = flag==0?1:0;
//记录翻转次数
ans++;
//使用if防止越界,因为right是可以到n的
if(right < n){
//标记下一次flag需要翻转的位置
flipFlags[right] = 1;
}
}
return ans;
}
};
时间复杂度: O(n),n为数组大小。
空间复杂度: O(n),n为数组大小。
空间优化
其实时间复杂度到达O(n),已经差不多了,我就没有继续优化了。
看了官方的题解,空间复杂度还可以优化到O(1)。
因为我们A存放的数,只有0和1,我们可以原地修改A数组,用其他值表示【目标翻转的分界线】,代替flipFlag
数组的使用。
class Solution {
public:
int minKBitFlips(vector<int>& A, int K) {
int left = 0;
int right = left + K -1;
//数组长度
int n = A.size();
int ans = 0;
/*
* 参考官方答案,优化空间到O(1)
*/
for(int i=0;i<n;i++){
//---------------------------------------------
if(A[i] == 2 || A[i] == 3){
//复原flag
A[i] -= 2;
//----------------------------------------------
//翻转flag
flag ^= 1;
}
//跳过无用的
if(A[i]==flag){
continue;
}
//右边界
right = i + K;
//如果当前需要翻转的区间 大于 数组了 说明一定不能完成翻转
if(right > n){
return -1;
}
//翻转一次
flag ^= 1;
//记录翻转次数
ans++;
//使用if防止越界,因为right是可以到n的
if(right < n){
//-----------------------------------------------
//标记下一次flag需要翻转的位置
A[right] +=2;
//-----------------------------------------------
}
}
return ans;
}
};
时间复杂度: O(n)。n为数组A的大小。
空间复杂度: O(1)。
PS:
对比一下空间O(n)和O(1)的提交,怎么感觉没什么区别。