剑指 Offer 10- II. 青蛙跳台阶问题

剑指 Offer 10- II. 青蛙跳台阶问题

一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

输入:n = 2
输出:2

示例 2:

输入:n = 7
输出:21

示例 3:

输入:n = 0
输出:1

限制:

0 <= n <= 100
  • 方法一:类似斐波那契数列的思想

C++版本
class Solution {
public:
    constexpr static int MOD = 1e9 + 7;
    int numWays(int n) {
        int a = 1 , b = 1, c = 0;
        if(n == 0) return a;
        else if(n == 1) return b;
        else {
            for(int i = 2; i <= n; i++){
                c = (a + b) % MOD;
                a = b;
                b = c;
            }
        }
        return c;
    }
};
Python版本
class Solution:
    def numWays(self, n: int) -> int:
        a,b,c = 1,1,0
        if n == 0:
            return a
        elif n == 1:
            return b
        else:
            for i in range(2,n + 1):
                c = (a + b) % (10 ** 9 + 7)
                a = b
                b = c
        return c
  • 方法二:动态规划

const int N = 105;
const int MOD = 1e9 +7;
class Solution {
public:
    int numWays(int n) {
        if(n <= 1){
            return 1;
        }
        int dp[N];
        dp[0] = dp[1] = 1;
        for(int i = 2;i <= n;i++){
            dp[i] = (dp[i-1] + dp[i-2]) % 1000000007;
        }
        return dp[n];
    }
};
  • 方法三:动态规划 + 滚动数组

    • 滚动数组思想: dp[i] = dp[i-1]+dp[i-2],每一个数都只和它的前两个状态有关,所以实际上只需要开一个大小为3的数组,通过不断的迭代,只保留与当前决策有用的状态,而之前的无用信息全部舍去。
const int MOD = 1e9 +7;
class Solution {
public:
    int numWays(int n) {
        if(n <= 1){
            return 1;
        }
        int dp[3];
        dp[0] = dp[1] = 1;
        for(int i = 2;i <= n;i++){
            dp[2] = (dp[1] + dp[0]) % MOD;
            dp[0] = dp[1];
            dp[1] = dp[2];
        }
        return dp[2];
    }
};
  • 方法四:矩阵快速幂

    [ 0 1 1 1 ] [ F 0 0 F 1 0 ] = [ F 1 0 F 0 + F 1 0 ] \begin{bmatrix} 0&1\\ 1&1\\ \end{bmatrix} \begin{bmatrix} F_0&0\\ F_1&0\\ \end{bmatrix}= \begin{bmatrix} F_1&0\\ F_0 + F_1&0\\ \end{bmatrix} [0111][F0F100]=[F1F0+F100]
    F 0 + F 1 = F 2 \begin{matrix} F_0 + F_1 = F_2 \end{matrix} F0+F1=F2

    [ 0 1 1 1 ] n [ F 0 0 F 1 0 ] = [ F n − 1 0 F n − 2 + F n − 1 0 ] \begin{bmatrix} 0&1\\ 1&1\\ \end{bmatrix}^n \begin{bmatrix} F_0&0\\ F_1&0\\ \end{bmatrix}= \begin{bmatrix} F_{n-1}&0\\ F_{n-2} + F_{n-1}&0\\ \end{bmatrix} [0111]n[F0F100]=[Fn1Fn2+Fn100]
    F n − 1 + F n − 2 = F n \begin{matrix} F_{n-1} + F_{n-2} = F_n \end{matrix} Fn1+Fn2=Fn

    如上的递推的矩阵可知,只需要计算矩阵的n次幂即可得到数列的第n项,因此问题转换为矩阵的n次幂。

const int M = 2;
typedef long long LL;
const int MOD = 1e9 + 7;
struct Ma{
    LL a[M][M];
    Ma(){
        memset(a,0,sizeof(a));
    }
    void Unit(){
        a[0][0] = a[1][1] = 1;
        a[0][1] = a[1][0] = 0;
    }
    Ma operator*(const Ma& C) const{
        Ma res;
        for(int i = 0; i < M; i++){
            for(int j = 0; j < M;j++){
                for(int k = 0; k< M; k++){
                    res.a[i][j] += (a[i][k] * C.a[k][j]) % MOD;
                    res.a[i][j] %= MOD;
                }
            }
        }
        return res;
    }
    Ma operator^(int n) const{
        Ma res; res.Unit(); //res设置为单位矩阵
        Ma A = *this;
        while(n){
            if(n&0x1) res = res*A;
            A=A*A;
            n >>= 1;
        }
        return res;
    }
};
class Solution {
public:
	int numWays(int n) {
        if(n <= 1) return 1;
		Ma A;
	    A.a[0][0] = 0;
	    A.a[0][1] = A.a[1][0] = A.a[1][1] = 1;
	    Ma F;
	    F.a[0][0] = 1;
        F.a[1][0] = 1;
        F.a[0][1] = F.a[1][1] = 0;
	    Ma res = (A^n)*F;
	    return res.a[0][0];
	}
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值