[0-1背包] LeetCode 494. 目标和

494. 目标和

给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 +-。对于数组中的任意一个整数,你都可以从 +-中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。

示例 1:

输入:nums: [1, 1, 1, 1, 1], S: 3
输出:5
解释:

-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3

一共有5种方法让最终目标和为3。

提示:

数组非空,且长度不会超过 20 。
初始的数组的和不会超过 1000 。
保证返回的最终结果能被 32 位整数存下。

解题思路(动态规划 0-1背包)

假设正数组合的和为x,负数组合的和为y,此题要求得x - y = S,又因为x + y = sum,代入得x - (sum - x) = S,因此x = (S + sum) / 2,而Ssum都是已知的,因此问题转化为在nums中找出和为x的组合,且nums中的每个元素只能使用一次,因此是一个典型的0-1背包问题。注意到:如果x = (S + sum) / 2不能整除,则无法得到方案,返回0即可。

  • 状态表示与转移方程:
  • dp[j]:装满容量j的背包的组合方案数
  • dp[j] += dp[j - nums[i]]
  • 初始化 dp[0] = 1 ,非0下标的初始化为0
  • 若要得到dp[j],需要从dp[j - nums[i]]加和而来,凑足金额为j - nums[i]的方案数为dp[j - nums[i]]

C++版本
class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int S) {
        int n = nums.size(),sum = accumulate(nums.begin(),nums.end(),0);
        if(S > sum or (S + sum) % 2 == 1) return 0;
        int cur = (S + sum) >> 1;
        vector<int> dp(cur + 1,0); 
        dp[0] = 1;
        for(auto x:nums){
            for(int j = cur; j >= x; j--){
                dp[j] += dp[j - x];
            }
        }
        return dp[cur];
    }
};
Python版本
class Solution:
    def findTargetSumWays(self, nums: List[int], S: int) -> int:
        Sum = sum(nums)
        if (S + Sum) % 2 == 1 or S > Sum:
            return 0
        cur = (S + Sum) // 2
        dp = [0] * (cur + 1)
        dp[0] = 1
        for x in nums:
            for j in range(cur,x - 1,-1):
                dp[j] += dp[j - x]
        return dp[cur]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值