朴素算法
时间复杂度: O ( n 2 ) O(n^2) O(n2)
根据素数的定义,试除以从2开始到sqrt(n)的整数,若均不能整除,则该数必为素数。
#include <iostream>
#include <cmath>
using namespace std;
bool isPrime(int n)
{
for(int i = 2; i * i <= n; ++i)
{
if (n % i == 0) return false;
}
return true;
}
int main()
{
int n;
cin >> n;
for(int i = 2; i <= n; ++i){
if (isPrime(i)){
cout << i << " is a prime." << endl;
}else{
cout << i << " isn't a prime." << endl;
}
}
return 0;
}
Eratosthenes筛法(埃氏筛法)
时间复杂度: O ( n ∗ l g l g n ) O(n*lglgn) O(n∗lglgn)(约等于 O ( 1.5 ∗ n ) O(1.5*n) O(1.5∗n))
首先将2到n范围内的整数写下来,其中2是最小的素数。将表中所有的2的倍数划去,表中剩下的最小的数字就是3,他不能被更小的数整除,所以3是素数。再将表中所有的3的倍数划去……以此类推,如果表中剩余的最小的数是m,那么m就是素数。然后将表中所有m的倍数划去,像这样反复操作,就能依次枚举n以内的素数。
#include <iostream>
#include <unordered_set>
#define Max 1000000
using namespace std;
bool flags[Max];
unordered_set<int> st;
void findPrime1(int n){
for(int i = 0; i <= n; ++i) flags[i] = true;
for(int i = 2; i <= n; ++i){
if (flags[i]){
st.insert(i);
for(int j = i * i; j <= n; j += i){
flags[j] = false;
}
}
}
}
int main() {
int n;
cin >> n;
findPrime1(n);
for(int i = 2; i <= n; ++i){
if (st.count(i)){
cout << i << " is a prime." << endl;
}else{
cout << i << " isn't a prime." << endl;
}
}
return 0;
}
欧拉筛法
时间复杂度: O ( n ) O(n) O(n)
欧拉筛法改进了埃式筛法的一些冗余,避免了重复的标记,其思想基础是“任何一个合数都可以由两个质数相乘得到”,那么对于每一个n我们就都可以用比它小的某一个质数来筛去。
#include <iostream>
#include <vector>
#include <unordered_set>
#define Max 1000000
using namespace std;
bool flags[Max];
vector<int> primes;
unordered_set<int> st;
void findPrime2(int n) {
for(int i = 0; i <= n; ++i) flags[i] = 1;
for(int i = 2; i <= n; ++i){
if (flags[i]){
primes.emplace_back(i);
st.insert(i);
}
int len = primes.size();
for(int j = 0; j < len && i * primes[j] <= n; ++j) {
flags[i * primes[j]] = false;
if(i % primes[j] == 0) break;
}
}
}
int main() {
int n;
cin >> n;
findPrime2(n);
for(int i = 2; i <= n; ++i){
if (st.count(i)){
cout << i << " is a prime." << endl;
}else{
cout << i << " isn't a prime." << endl;
}
}
return 0;
}
注:欧拉筛的难点就在于对
if (i % primes[j] == 0) break;
这步的理解,当i是primes[j]的整数倍时,记 m = i / primes[j],那么 i * primes[j+1] 就可以变为 (m * primes[j+1]) * primes[j],这说明 i * primes[j + 1] 是 primes[j] 的整数倍,不需要再进行标记(在之后会被 primes[j] * 某个数 标记),对于 prime[j+2] 及之后的素数同理,直接跳出循环,这样就避免了重复标记。