【C++】求n以内素数

朴素算法

时间复杂度: O ( n 2 ) O(n^2) O(n2)

根据素数的定义,试除以从2开始到sqrt(n)的整数,若均不能整除,则该数必为素数。

#include <iostream>
#include <cmath>
using namespace std;

bool isPrime(int n)
{
    for(int i = 2; i * i <= n; ++i)
    {
        if (n % i == 0) return false;
    }
    return true;
}

int main()
{
    int n;
    cin >> n;
    for(int i = 2; i <= n; ++i){
        if (isPrime(i)){
            cout << i << " is a prime." << endl;
        }else{
            cout << i << " isn't a prime." << endl;
        }
    }
    return 0;
}

Eratosthenes筛法(埃氏筛法)

时间复杂度: O ( n ∗ l g l g n ) O(n*lglgn) O(nlglgn)(约等于 O ( 1.5 ∗ n ) O(1.5*n) O(1.5n)

首先将2到n范围内的整数写下来,其中2是最小的素数。将表中所有的2的倍数划去,表中剩下的最小的数字就是3,他不能被更小的数整除,所以3是素数。再将表中所有的3的倍数划去……以此类推,如果表中剩余的最小的数是m,那么m就是素数。然后将表中所有m的倍数划去,像这样反复操作,就能依次枚举n以内的素数。

#include <iostream>
#include <unordered_set>
#define Max 1000000
using namespace std;

bool flags[Max];
unordered_set<int> st;

void findPrime1(int n){
	for(int i = 0; i <= n; ++i) flags[i] = true;
	for(int i = 2; i <= n; ++i){
		if (flags[i]){
            st.insert(i);
            for(int j = i * i; j <= n; j += i){
                flags[j] = false;
            }
        }
	}
}
int main() {
    int n;
    cin >> n;
	findPrime1(n);
	for(int i = 2; i <= n; ++i){
        if (st.count(i)){
            cout << i << " is a prime." << endl;
        }else{
            cout << i << " isn't a prime." << endl;
        }
    }
	return 0;
}

欧拉筛法

时间复杂度: O ( n ) O(n) O(n)

欧拉筛法改进了埃式筛法的一些冗余,避免了重复的标记,其思想基础是“任何一个合数都可以由两个质数相乘得到”,那么对于每一个n我们就都可以用比它小的某一个质数来筛去。

#include <iostream>
#include <vector>
#include <unordered_set>
#define Max 1000000
using namespace std;

bool flags[Max];
vector<int> primes;
unordered_set<int> st;

void findPrime2(int n) {
    for(int i = 0; i <= n; ++i) flags[i] = 1;
	for(int i = 2; i <= n; ++i){
		if (flags[i]){
            primes.emplace_back(i);
            st.insert(i);
        }
        int len = primes.size();
        for(int j = 0; j < len && i * primes[j] <= n; ++j) {
			flags[i * primes[j]] = false;
			if(i % primes[j] == 0) break;
		}
	}
}
int main() {
	int n;
    cin >> n;
	findPrime2(n);
	for(int i = 2; i <= n; ++i){
        if (st.count(i)){
            cout << i << " is a prime." << endl;
        }else{
            cout << i << " isn't a prime." << endl;
        }
    }
	return 0;
}

注:欧拉筛的难点就在于对if (i % primes[j] == 0) break;这步的理解,当i是primes[j]的整数倍时,记 m = i / primes[j],那么 i * primes[j+1] 就可以变为 (m * primes[j+1]) * primes[j],这说明 i * primes[j + 1] 是 primes[j] 的整数倍,不需要再进行标记(在之后会被 primes[j] * 某个数 标记),对于 prime[j+2] 及之后的素数同理,直接跳出循环,这样就避免了重复标记。

参考资料

  1. 求n以内的的素数——埃氏筛法和欧拉筛法
  2. 素数//素数筛
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值