Description
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output
4
前话-拓展欧几里得)
扩展欧几里德算法是用来在已知a, b求解一组整数解x,y,使它们满足贝祖等式(具体不是很清楚是啥意思,反正就那样): ax+by=gcd(a,b)=dax+by=gcd(a,b)=d(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。
-
对于普通的公式ax+by=cax+by=c有整数解的条件是c=k∗gcd(a,b)c=k∗gcd(a,b),k为任意常数。
-
对于公式ax+by=gcd(a,b)=dax+by=gcd(a,b)=d,求解其中一个x,y的方法及其证明
-
显然当 b=0,gcd(a,b)=ab=0,gcd(a,b)=a时,此时 x=1,y=0x=1,y=0;
-
a>b>0a>b>0 时,设 ax1+by1=gcd(a,b)ax1+by1=gcd(a,b);
bx2+(a mod b)∗y2=gcd(b, a mod b)bx2+(a mod b)∗y2=gcd(b, a mod b);
根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b)gcd(a,b)=gcd(b,a mod b);
则:ax1+by1=bx2+(a mod b)y2ax1+by1=bx2+(a mod b)y2;
即:ax1+by1=bx2+(a−[a/b]∗b)y2=ay2+bx2−[a/b]∗by2ax1+by1=bx2+(a−[a/b]∗b)y2=ay2+bx2−[a/b]∗by2。
说明: a−[a/b]ba−[a/b]b即为mod运算。[a/b][a/b]代表取小于a/ba/b的最大整数,下面同样适用。
也就是ax1+by1==ay2+b(x2−[a/b]∗y2)ax1+by1==ay2+b(x2−[a/b]∗y2);
根据恒等定理,对应项的系数相等得:
x1=y2x1=y2; y1=x2−[a/b]∗y2y1=x2−[a/b]∗y2;
这样我们就得到了求解 x1,y1x1,y1 的方法:,x1,y1,x1,y1 的值基于,x2,y2,x2,y2。使用递归的话,上一层的值,取决于下一层。
上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
递归边界:()gcd(a, 0)=1∗a−0∗0=a()gcd(a, 0)=1∗a−0∗0=a。
-
-
对于公式ax+by=cax+by=c,求解x,和y的方法
- 如果c % gcd(a,b)!=0c % gcd(a,b)!=0,即c不是gcd的整数倍,则无解。
- 如果c % gcd(a,b)==0c % gcd(a,b)==0 ,则c / gcd(a,b)=tc / gcd(a,b)=t,那么求出方程 a∗x+b∗y=gcd(a,b)a∗x+b∗y=gcd(a,b)的所有解x,y,将x,y乘上t,对应的x’,y’即是方程a∗x+b∗y=t∗gcd(a,b)a∗x+b∗y=t∗gcd(a,b)的一个解
-
如何求ax+by=gcd(a,b)=dax+by=gcd(a,b)=d最小整数解,对于ax+by=cax+by=c,c为常数,也适用。
- 我们可以用扩展欧几里得算法得出
ax+by=gcd(a,b)ax+by=gcd(a,b)
的一组解(x1, y1)(x1, y1),那么其他解呢?任取另一组解(x2, y2)(x2, y2),则
ax1+by1=ax2+by2ax1+by1=ax2+by2
(因为它们都等于gcd(a,b)gcd(a,b) ),变形得a(x1−x2)=b(y2−y1)a(x1−x2)=b(y2−y1)
假设gcd(a, b)=ggcd(a, b)=g,方程左右两边同时除以g(如果g=0,说明a或b等于0,可以特殊判断),得a′(x1−x2)=b′(y2−y1)a′(x1−x2)=b′(y2−y1)
其中,a′=a/g,b′=b/g,a′=a/g,b′=b/g。 注意,此时a'和b'互素(想想分数的化简)
x1−x2=b′a′∗(y2−y1)x1−x2=b′a′∗(y2−y1)
则因此x1−x2x1−x2一定是b'的整数倍(因为a'中不包含b',所以x1−x2x1−x2一定包含b')。 设它为x1−x2=k∗b′x1−x2=k∗b′,计算得y2−y1=k∗a′y2−y1=k∗a′。注意,上述的推导过程并没有用到ax+byax+by的右边是什 么,因此得出以下结论:
设a,b,c为任意整数,若方程ax+by=cax+by=c的一组解是(x0,y0)(x0,y0),则它的任意整数解都可以写
(x0+k∗b′,y0−k∗a′)(x0+k∗b′,y0−k∗a′),其中a′=[a/gcd(a,b)]a′=[a/gcd(a,b)],b′=[b/gcd(a,b)]b′=[b/gcd(a,b)],k取任意整数。
这样我们就可以求出来最小的整数解了。(先用扩展欧几里得算法求出一组解,然后进行变换)
解题思路
根据题意,两只青蛙需要在同一时间到达用一个点上才算相遇,易得(设t就是所求的答案)
(m∗t+x)%L=(n∗t+y)%L(m∗t+x)%L=(n∗t+y)%L
因为(m∗t+x)=w∗L+v(m∗t+x)=w∗L+v,(n∗t+y)=s∗L+v(n∗t+y)=s∗L+v
两边相减得
(n−m)∗t+(w−s)∗L=x−y(n−m)∗t+(w−s)∗L=x−y
令a=n−ma=n−m,b=Lb=L,c=x−yc=x−y, X=tX=t, Y=w−sY=w−s
然后就是拓展欧几里得的处理了
#include <cstdio>
#include <string.h>
#include<math.h>
#include <algorithm>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
}
void extended_gcd(ll a,ll b,ll &x,ll &y) //注意参数,后两个是c++里面的引用
{
ll r,t;
if(b==0)
{
x=1;
y=0;
return ;
}
extended_gcd(b,a%b,x,y);
t=x;
x=y;
y=t-a/b*y;
}
int main()
{
ll x,y,m,n,L,g,c,a,b;
scanf("%lld%lld%lld%lld%lld", &x, &y, &m, &n, &L);
a=n-m;
c=x-y;
b=L;
g=gcd(a, b);
if(c%g!=0)
printf("Impossible\n");
else
{
extended_gcd(a,b,x,y);
x=x*c/g;
ll t=b/g;
if(x>=0) //如果最初求的解大于零,后面就直接模b/g就行
x=x%t;
else
x=x%t+t;//如果小于零,就先模,然后加上b/g后就一定大于0了
printf("%lld\n",x);
}
return 0;
}
2021.10.5