介绍:
杨辉三角,是二项式系数在三角形中的一种几何排列。在欧洲,这个表叫做帕斯卡三角形。帕斯卡(1623----1662)是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年。杨辉三角是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合。
前提:每行端点与结尾的数为1
-
每个数等于它上方两数之和。
-
每行数字左右对称,由1开始逐渐变大。
-
第n行的数字有n项。
-
前n行共[(1+n)n]/2 个数。
-
第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
-
第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
-
每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n(n>1)行的第i个数等于第n-1行的第i-1个数和第i个数之和,这也是组合数的性质之一。 即 C(n,i)=C(n-1,i)+C(n-1,i-1)。
编程实现:
根据规律C(n,i)=C(n-1,i)+C(n-1,i-1),我们可以通过二维数组来实现杨辉三角。
代码如下:
#include <stdio.h>
#define N 15
int main(){
int s[N][N] = {0};
s[0][0] = 1;//第一行只有一个值需要手动赋值
int i = 0;
int j = 0;
int k = 0;
int n = 0;
while(n<=0 || n>15){
printf("请输入需要打印的行数:");
scanf("%d",&n);
}
for(i = 1; i < n; i++){
s[i][0] = 1;//给每行的第一列赋值
for(j = 1; j <= i; j++){
s[i][j] = s[i-1][j] + s[i-1][j-1];//其他列的值根据规律赋值
}
}
printf("%d行杨辉三角如图:\n",n);
for(i = 0; i < n; i++){
for(k=1;k<=n-i;k++)//让每行输出的数字看起来中间对齐形成三角形
printf(" "); //调整合适的占位间距
for(j = 0; j <= i; j++){
printf("%-6d", s[i][j]);//%-6d使输出的数据左对齐并有一定的间距
}
printf("\n");
}
return 0;
}
输出结果如下:
注意:
随着行数的增加,每行中间的数字会越来越长,终端显示的图像会因为数字长度和间距的问题无法维持三角形的形状和显示规律,所以我们要合理控制打印的行数。