ACM 搜索 hdu1016 Prime Ring Problem


 
 
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime. Note: the number of first circle should always be 1.
 
Input
n (0 < n < 20).
 
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order. You are to write a program that completes above process. Print a blank line after each case.
 
Sample Input
   
   
6 8
 

Sample Output
   
   
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2



注意:最后一个数要和1检验是否为素数,这是一个环

#include <stdio.h>

int num[21],mark[21],n;
int prime_num[12] = {2,3,5,7,11,13,17,19,23,29,31,37};

//判断是否是质数,是返回1,不是返回0
int is_prime(int a)
{
    for(int i = 0; i < 12;i++)
    if(a==prime_num[i])return 1;
    return 0;
}
void print_num()
{
    for(int i = 1; i < n;i++)
    printf("%d ",num[i]);
    printf("%d",num[n]);
}

int dfs(int pre,int post,int flag)
{
    //如果不符合,直接返回
    if(!is_prime(pre+post))
    return 0;
    num[flag] = post;
    if(flag==n&&is_prime(post+1))
    {
        print_num();
        printf("\n");
        return 1;
    }
    //使用过了这个数字就标记为0
    mark[post] = 0;
    for(int i = 2;i<=n;i++)
    if(mark[i]!=0 && dfs(post,i,flag+1))break;
    //标记位恢复原状
    mark[post] = 1;
    return 0;
}

int main()
{
    int count;
    count = 1;
    while(scanf("%d",&n)!=EOF)
    {
        for(int i = 1; i <= n; i++)
        mark[i] = i;
        num[1] = 1;
        printf("Case %d:\n",count++);
        if(n==1)printf("1\n");
        for(int i = 2;i<=n;i++)
        dfs(1,i,2);
        printf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值