The following problem is well-known: given integers n and m, calculate
where 2n = 2·2·...·2 (n factors), and denotes the remainder of division of x by y.
You are asked to solve the "reverse" problem. Given integers n and m, calculate
Input
The first line contains a single integer n (1 ≤ n ≤ 108).
The second line contains a single integer m (1 ≤ m ≤ 108).
Output
Output a single integer — the value of .
Examples
input
4 42
output
10
input
1 58
output
0
input
98765432 23456789
output
23456789
Note
In the first example, the remainder of division of 42 by 24 = 16 is equal to 10.
In the second example, 58 is divisible by 21 = 2 without remainder, and the answer is 0.
m%2n
2^n太大了,我们是不可能全部算出来的。m范围是固定的,也就是说当n达到一定值时,2^n一定大于m了。所以直接输出m即可。我们就是30,n大于30是,2n就很大了,直接输出m,否则慢慢算