codeforces 913 A Modular Exponentiation

Description
The following problem is well-known: given integers n and m, calculate

2^n mod m

where 2n=22...2 (n factors), and denotes the remainder of division of x by y.

You are asked to solve the “reverse” problem. Given integers n and m, calculate

m mod 2^n

Input

The first line contains a single integer n (1 ≤ n ≤ 10 8 ).

The second line contains a single integer m (1 ≤ m ≤ 10 8 ).
Output

Output a single integer — the value of m mod 2^n.
Examples

Input
4
42
Output
10

Input
1
58
Output
0
Input
98765432
23456789
Output
23456789

Note

In the first example, the remainder of division of 42 by 2 4  = 16 is equal to 10.

In the second example, 58 is divisible by 2 1  = 2 without remainder, and the answer is 0.

题意:输入n,m求m mod 2 n
思路:因为m最大只有10 8 ,所以对于很大的n大可不必将2 n 计算出来,只用判断一下是否比m大就行了。

#include <stdio.h>

int main() {
    int n, m;
    //m mod 2^n
    scanf("%d %d", &n, &m);
    int n2 = 1;
    for (int i = 0; i < n; ++i) {//做n次2的幂运算
        if (n2 * 2 <= m)n2=n2 * 2;
        else { n2 = n2 * 2; break; }//当n2大于m时中断计算
    }
    printf("%d", m%n2);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值