uva 10815 小紫<set>

本文介绍了一个使用C++编写的程序,该程序能够从输入流中读取文本,并从中提取所有单词,将它们转换为小写形式并存储在一个不重复的集合中。最后,程序会输出这些单词,适用于文本处理和词汇统计等场景。
#include<iostream>
#include<set>
#include<vector>
#include<map>
#include<sstream>
#include<string>
using namespace std;
set<string> dict;
int main()
{
string s,buf;
while(cin>>s)
{
for(int i = 0; i<s.length() ; i++)
{
if(isalpha(s[i]))
{
s[i] = tolower(s[i]);
}
else
s[i] = ' ';
}
stringstream ss(s);
while(ss >> buf)
{
dict.insert(buf);
}
}
   for(set<string>::iterator iter=dict.begin();iter!=dict.end();iter++)
{
cout<< *iter <<endl;
}
}
内容概要:本文系统介绍了基于因果推断的智能经营模型体系,重点阐述了从传统信贷经营v1.0时代向智能信贷v2.0时代的演进。传统体系受限于人工策略、目标分散和效率低下,而v2.0体系以客户长期生命价值(LTV)为统一优化目标,依托高维特征自动化处理和因果推断技术,实现经营决策的精准化与自动化迭代。文章深入剖析了相关关系与因果关系的区别,指出传统机器学习在决策场景中的局限性,并引入因果推断解决反事实预估问题。通过自研Mono-CFR等算法,构建额度、价格、还款方式、权益等多维度因果模型,实现个体层面的决策效果预估,在控制风险的前提下提升人均盈利与放款规模。未来方向聚焦技术迭代与多经营手段的动态联合优化。; 适合人群:具备一定机器学习基础,从事金融科技、信贷产品、数据科学等相关领域的研发与策略人员,尤其是关注智能决策与因果推断应用的从业者;; 使用场景及目标:①解决信贷经营中“额度越高风险越低”等违反直觉的数据悖论;②实现个体维度的精准定价、定额与权益发放;③量化经营动作的增量效果,优化客户全生命周期价值(LTV);④推动从单点优化到多干预联合决策的智能化升级; 阅读建议:此资源强调因果推断在实际业务中的建模与落地,建议结合文中提到的额度、价格、权益等案例,深入理解反事实推理、混淆因子处理与多任务因果模型的设计思路,并关注其在A/B实验不足场景下的优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值