蓝桥 迷宫寻宝 记忆化搜索

问题描述
  X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。

地宫的入口在左上角,出口在右下角。

小明被带到地宫的入口,国王要求他只能向右或向下行走。

走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。

当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。

请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
  输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)

接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
输出格式
  要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 2 2
1 2
2 1
样例输出
2
样例输入
2 3 2
1 2 3
2 1 5
样例输出
14

#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <iostream>
using namespace std;
const int mod = 1000000007;
int n,m,k;
int mp[60][60];
int dp[60][60][100][13];
int dfs(int x,int y,int num,int v)
{
	if(dp[x][y][num][v]!=-1)
		return dp[x][y][num][v];
	if(x==n&&y==m)
	{
		if(num==k||(num==k-1&&mp[x][y]>v))
			return dp[x][y][num][v]=1;
		return dp[x][y][num][v]=0;
	}
	int t=0;
	if(x>n||y>m||num>k) return dp[x][y][num][v]=0;
	for(int i=0;i<4;i++)
	{
		if(i==0&&mp[x][y]>v)
			t=(t+dfs(x+1,y,num+1,mp[x][y]))%mod;
		if(i==1)
			t=(t+dfs(x+1,y,num,v))%mod;
		if(i==2&&mp[x][y]>v)
			t=(t+dfs(x,y+1,num+1,mp[x][y]))%mod;
		if(i==3)
			t=(t+dfs(x,y+1,num,v))%mod;
	}
	// cout<<t<<endl;
	//  if(y+1<m)
	// {
	// 	if(c[x][y]>v)
	// 	{
	// 		t=(t+dfs(x,y+1,num+1,c[x][y]))%mod;
	// 	}
	// 	t=(t+dfs(x,y+1,num,v))%mod;
	// }
	// if(x+1<n)
	// {
	// 	if(c[x][y]>v)
	// 		t=(t+dfs(x+1,y,num+1,c[x][y]))%mod;
	// 	t=(t+dfs(x+1,y,num,v))%mod;
	// }
    return dp[x][y][num][v]=t%mod;
}
int main()
{
	cin>>n>>m>>k;
	memset(dp,-1,sizeof(dp));
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
		{
			cin>>mp[i][j];
			mp[i][j]++; //宝藏的值可能为0 不好比较 所以所有的均值加1,此法可以运用于此类情况
		}
	cout<<dfs(1,1,0,0)<<endl;
	return 0;
}

dp写法

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define ff(i,a,b) for(int i = a; i <= b; i++)
#define f(i,a,b) for(int i = a; i < b; i++)
typedef pair<int,int> P;
#define ll long long
ll dp[52][52][13][13],value[52][52];
const ll mod = 1000000007;
int main()
{
    ios::sync_with_stdio(false);
    int n,m ,k;
    cin >> n >> m >> k;
    ff(i,1,n) ff(j,1,m)
    {
     	cin >> value[i][j];
     	value[i][j]++;
    }
    dp[1][1][0][0] = 1;
    dp[1][1][1][value[1][1]] = 1;
    ff(i,1,n) ff(j,1,m) ff(g,0,k) ff(h,0,13)
    {
    	dp[i][j][g][h] += (dp[i - 1][j][g][h] + dp[i][j - 1][g][h])%mod;
    	if(g - 1 >= 0 && h < value[i][j])
    	{
    		dp[i][j][g][value[i][j]] += dp[i][j - 1][g - 1][h];
    		dp[i][j][g][value[i][j]] += dp[i - 1][j][g - 1][h];
    	}
    }
    ll ans = 0;
    ff(i,0,13) 
    {
    	ans += dp[n][m][k][i];
    	ans %= mod;
    }
    cout << ans << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值