问题描述
X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)
接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
输出格式
要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 2 2
1 2
2 1
样例输出
2
样例输入
2 3 2
1 2 3
2 1 5
样例输出
14
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <iostream>
using namespace std;
const int mod = 1000000007;
int n,m,k;
int mp[60][60];
int dp[60][60][100][13];
int dfs(int x,int y,int num,int v)
{
if(dp[x][y][num][v]!=-1)
return dp[x][y][num][v];
if(x==n&&y==m)
{
if(num==k||(num==k-1&&mp[x][y]>v))
return dp[x][y][num][v]=1;
return dp[x][y][num][v]=0;
}
int t=0;
if(x>n||y>m||num>k) return dp[x][y][num][v]=0;
for(int i=0;i<4;i++)
{
if(i==0&&mp[x][y]>v)
t=(t+dfs(x+1,y,num+1,mp[x][y]))%mod;
if(i==1)
t=(t+dfs(x+1,y,num,v))%mod;
if(i==2&&mp[x][y]>v)
t=(t+dfs(x,y+1,num+1,mp[x][y]))%mod;
if(i==3)
t=(t+dfs(x,y+1,num,v))%mod;
}
// cout<<t<<endl;
// if(y+1<m)
// {
// if(c[x][y]>v)
// {
// t=(t+dfs(x,y+1,num+1,c[x][y]))%mod;
// }
// t=(t+dfs(x,y+1,num,v))%mod;
// }
// if(x+1<n)
// {
// if(c[x][y]>v)
// t=(t+dfs(x+1,y,num+1,c[x][y]))%mod;
// t=(t+dfs(x+1,y,num,v))%mod;
// }
return dp[x][y][num][v]=t%mod;
}
int main()
{
cin>>n>>m>>k;
memset(dp,-1,sizeof(dp));
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
cin>>mp[i][j];
mp[i][j]++; //宝藏的值可能为0 不好比较 所以所有的均值加1,此法可以运用于此类情况
}
cout<<dfs(1,1,0,0)<<endl;
return 0;
}
dp写法
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define ff(i,a,b) for(int i = a; i <= b; i++)
#define f(i,a,b) for(int i = a; i < b; i++)
typedef pair<int,int> P;
#define ll long long
ll dp[52][52][13][13],value[52][52];
const ll mod = 1000000007;
int main()
{
ios::sync_with_stdio(false);
int n,m ,k;
cin >> n >> m >> k;
ff(i,1,n) ff(j,1,m)
{
cin >> value[i][j];
value[i][j]++;
}
dp[1][1][0][0] = 1;
dp[1][1][1][value[1][1]] = 1;
ff(i,1,n) ff(j,1,m) ff(g,0,k) ff(h,0,13)
{
dp[i][j][g][h] += (dp[i - 1][j][g][h] + dp[i][j - 1][g][h])%mod;
if(g - 1 >= 0 && h < value[i][j])
{
dp[i][j][g][value[i][j]] += dp[i][j - 1][g - 1][h];
dp[i][j][g][value[i][j]] += dp[i - 1][j][g - 1][h];
}
}
ll ans = 0;
ff(i,0,13)
{
ans += dp[n][m][k][i];
ans %= mod;
}
cout << ans << endl;
return 0;
}