蓝桥杯 地宫寻宝 带缓存的DFS


  历届试题 地宫取宝  
时间限制:1.0s   内存限制:256.0MB
    
问题描述
  X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。

  地宫的入口在左上角,出口在右下角。

  小明被带到地宫的入口,国王要求他只能向右或向下行走。

  走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。

  当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。

  请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
  输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)

  接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
输出格式
  要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 2 2
1 2
2 1
样例输出
2
样例输入
2 3 2
1 2 3
2 1 5
样例输出

dp[x][y][num][maxValue]  代表走到(x,y)位置的时候手里持有num个宝贝而且最大值为maxValue的方案数.

该数组一开始初始化为-1.

#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define eps 10e-10
#define N 1000000007
int ans;
int d[51][51][13][14];
int p[51][51];
int n,m,k;
int dfs(int x,int y,int num,int maxvalue){
    if(d[x][y][num][maxvalue+1] != -1){//表示这个状态已经访问过了,方案数已经确定了.
        return d[x][y][num][maxvalue+1];
    }
    int t = 0;
    if(x == n-1 && y == m-1){
		if(num==k||(num==k-1&&p[x][y]>maxvalue))
             return d[x][y][num][maxvalue+1] = 1;
		else
			 return d[x][y][num][maxvalue+1] = 0;
    }
    if(x + 1 < n){
        if(p[x][y] > maxvalue){
            t += dfs(x+1,y,num+1,p[x][y]);
            t %= N;
        }
            t += dfs(x+1,y,num,maxvalue);
            t %= N;
    }
    if(y + 1 < m){
        if(p[x][y] > maxvalue){
            t += dfs(x,y+1,num+1,p[x][y]);
            t %= N;
        }
            t += dfs(x,y+1,num,maxvalue);
            t %= N;
    }
    d[x][y][num][maxvalue+1] = t;
    return d[x][y][num][maxvalue+1];
}
int main(){
    while(cin>>n>>m>>k){
        for(int i = 0; i < n; ++i){
            for(int j = 0; j < m; ++j)
            cin>>p[i][j];
        }
        memset(d,-1,sizeof(d));
        d[0][0][0][0] = dfs(0,0,0,-1);//因为宝贝的最小价值可以为0
        cout<<d[0][0][0][0]<<endl;
    }
    return 0;
}




鉴于提供的内容是一段包含三个不同的Java程序的代码,我无法提供一个完整的答案来回答你的问题。但是,我可以为你提供一些信息。 根据引用和引用的内容,这两个程序都涉及到动态规划的算法。引用中的程序解决了一个关于序列的最长递增子序列的问题,而引用中的程序解决了一个关于背包问题的二维动态规划的问题。 对于引用中的内容,它是一个程序解决的是一个最长上升子序列的问题。 根据提供的代码,这些程序可能是用来解决一些蓝桥杯竞赛的题目。然而,我无法提供更多关于具体问题的信息。 如果你需要帮助解决特定的问题,我建议你仔细阅读每个程序的代码并理解它们的功能,然后根据需要进行相应的修改。如果你有关于动态规划或蓝桥杯竞赛的更具体的问题,我会很愿意帮助你。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [蓝桥杯AcWing学习笔记 3-2简单DP的学习(附相关蓝桥真题:地宫取宝、波动数列)(Java)](https://blog.csdn.net/weixin_53407527/article/details/123122245)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值