410. 分割数组的最大值

给定一个非负整数数组和一个整数 m,目标是将数组分成 m 个非空的连续子数组,使这些子数组各自和的最大值最小。通过二分查找法找到最佳分割的最大值,从而达到最小的和最大值。
摘要由CSDN通过智能技术生成

题目来源

题目描述

给定一个非负整数数组和一个整数 m,你需要将这个数组分成 m 个非空的连续子数组。设计一个算法使得这 m 个子数组各自和的最大值最小。

注意:
数组长度 n 满足以下条件:
1 ≤ n ≤ 1000
1 ≤ m ≤ min(50, n)

示例:

输入:
nums = [7,2,5,10,8]
m = 2

输出:
18

解释:
一共有四种方法将nums分割为2个子数组。
其中最好的方式是将其分为[7,2,5] 和 [10,8],
因为此时这两个子数组各自的和的最大值为18,在所有情况中最小。

解题思路

最大值尽可能小
题意理解,把一个数组分成m个子数组,可以有多种分割情况。求这m个子数组各自的和,取其最大值代表这种分割情况。现在求解多种分割情况的最小值。
用二分查找
分割数组的最大值的范围为[max(nums), sum(nums)],上界是整个数组的总和,下界是数组的最大值。
首先先假设最大值是mid ,设置变量count用来记录数组分割成子数组的个数,m为题目要求子数组的个数,如果count > m,就是多切割,设定的最大值mid太小了,应该往右边查找l = mid + 1

代码
class Solution {
   
    public int splitArray(int[] nums, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值