题目描述
给定一个非负整数数组和一个整数 m,你需要将这个数组分成 m 个非空的连续子数组。设计一个算法使得这 m 个子数组各自和的最大值最小。
注意:
数组长度 n 满足以下条件:
1 ≤ n ≤ 1000
1 ≤ m ≤ min(50, n)
示例:
输入:
nums = [7,2,5,10,8]
m = 2
输出:
18
解释:
一共有四种方法将nums分割为2个子数组。
其中最好的方式是将其分为[7,2,5] 和 [10,8],
因为此时这两个子数组各自的和的最大值为18,在所有情况中最小。
解题思路
最大值尽可能小
题意理解,把一个数组分成m个子数组,可以有多种分割情况。求这m个子数组各自的和,取其最大值代表这种分割情况。现在求解多种分割情况的最小值。
用二分查找
分割数组的最大值的范围为[max(nums), sum(nums)],上界是整个数组的总和,下界是数组的最大值。
首先先假设最大值是mid ,设置变量count用来记录数组分割成子数组的个数,m为题目要求子数组的个数,如果count > m
,就是多切割,设定的最大值mid太小了,应该往右边查找l = mid + 1
代码
class Solution {
public int splitArray(int[] nums,