目录
②计算Fibonacci的空间复杂度(返回斐波那契数列的前n项)
④计算Fibonacci的空间复杂度(返回斐波那契数列的前n项)
一.前言
1.什么是数据结构
(1)概念
数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。
二.什么是算法
1.概念
算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。
二.算法的时间复杂度和空间复杂度
1.算法效率
(1)算法的复杂度
- 算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
- 时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。
2.时间复杂度
(1)概念
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
- 示例
请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
++count;
}
}
for (int k = 0; k < 2 * N; ++k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
第一个for循环:count执行了N*N次
第二个for循环:count执行了2N次
第三个for循环:count执行了10次
所以Func1 执行的基本操作次数 :F(N)=N^2+2n+10次
法。实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示
(2)大O渐进表示
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:O(N^2)N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
- 有关时间复杂度的情况
算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到平均情况:N/2次找到
最坏情况:N次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
(3)常见的时间复杂度计算举例
①计算Func2的时间复杂度
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N) 。
②计算Func3的时间复杂度
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++k)
{
++count;
}
for (int k = 0; k < N; ++k)
{
++count;
}
printf("%d\n", count);
}
基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M),这里M和N的大小未知,如果M>N,时间复杂度为O(M);如果M<N,时间复杂度为O(N);N和M差不多大,时间复杂度为O(N)或O(M)。
③计算Func4的时间复杂度
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)
{
++count;
}
printf("%d\n", count);
}
基本操作执行了100次,通过推导大O阶方法,时间复杂度为 O(1) ,O(1)并不是代表一次,而是代表常数次。
④计算BubbleSort的时间复杂度
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2) 。
⑤计算PartSort1的时间复杂度
int PartSort1(int* a, int left, int right)
{
int keyi = left;
while (left < right)
{
//找小
while(left<right&&a[right]>=a[keyi])
{
--right;
}
//找大
while (left < right && a[left] < a[keyi])
{
++left;
}
Swap(&a[left], &a[right]);
}
Swap(&a[left], &a[right[);
return left;
}
执行该函数的时间复杂度为O(N)。
⑤计算BinarySearch的时间复杂度
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n - 1;
// [begin, end]:begin和end是左闭右闭区间,因此有=号
while (begin <= end)
{
int mid = begin + ((end - begin) >> 1);
if (a[mid] < x)
begin = mid + 1;
else if (a[mid] > x)
end = mid - 1;
else
return mid;
}
return -1;
}
执行该函数的时间复杂度为O(logN)。(当底数为2时,可以省略,但底数为其他时,不能省略)
⑥计算阶乘递归Fac的时间复杂度
long long Fac(size_t N)
{
if(0 == N)
return 1;
return Fac(N-1)*N;
}
执行该函数的时间复杂度是O(N)。
- 拓展
计算下面Fac函数的时间复杂度
long long Fac(size_t N)
{
if (0 == N)
return 1;
for (size_t i = 0; i < N; i++)
{
//……
}
return Fac(N - 1) * N;
}
执行该函数的时间复杂度是O(N^2)。
每次调用内部执行N的次数是发生变化的:第一次执行N,第二次执行N-1……以此类推将这些调用再进行累加,可知为等差数列,故时间复杂度为O(N^2)。
⑦ 计算斐波那契数列递归Fib的时间复杂度
long long Fib(size_t N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
执行该函数的时间复杂度为O(2^N)。
3.空间复杂度
(1)概念
- 空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时额外占用存储空间大小的量度
- 空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法。
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
(2)常见的空间复杂度举例
① 计算BubbleSort的空间复杂度
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i - 1] > a[i])
{
Swap(&a[i - 1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
使用了常数个额外空间,所以空间复杂度为 O(1) 。
②计算Fibonacci的空间复杂度(返回斐波那契数列的前n项)
long long* Fibonacci(size_t n)
{
if (n == 0)
return NULL;
long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n; ++i)
{
fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
}
return fibArray;
}
malloc开辟了N+1个空间,所以空间复杂度为 O(N)。
③计算阶乘递归Fac的空间复杂度
long long Fac(size_t N)
{
if(N == 0)
return 1;
return Fac(N-1)*N;
}
执行该函数的空间复杂度为O(N)。
递归空间复杂度计算,也是空间累加,但是不同的空间可以重复利用。
常数个空间的调用,开辟常数个空间。所以该函数的空间复杂度为O(N)。
④计算Fibonacci的空间复杂度(返回斐波那契数列的前n项)
long long* Fibonacci(size_t n)
{
if (n == 0)
return NULL;
long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n; ++i)
{
fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
}
return fibArray;
}
递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)。
三.总结
在计算时间复杂度时不要只看循环的次数,要通过该程序的主要思想来分析时间复杂度 ,这样得出的最终结果才会正确。因此,编程思想的学习与深入在日后的学习过程中尤为重要。