基于Illustrious底模的模型推荐
针对基于Illustrious底模的模型推荐,结合其技术特点(SDXL内核、动漫优化)及社区生态,综合整理以下适配性较高的模型和方案:
一、直接基于Illustrious的衍生模型
-
BespokeIllMix
- 特点:专为动漫风格设计,擅长高精度角色生成,支持复杂场景(如动态光影、多人物互动)。
- 应用场景:适用于日系二次元插画、轻小说插图的快速生成。
- 来源:[某搜索来源1]
-
WAI-NSFW-illustrious-SDXL
- 特点:由国内创作者WAI优化,在Illustrious基础上增强了对亚洲角色面部特征和服饰细节的表现力,尤其擅长古风与赛博朋克风格的融合。
- 案例:通过“回眸”等提示词可生成具有动态感的角色姿态。
- 来源:[某搜索来源2]
二、兼容性较高的辅助模型/LoRA
-
墨心MoXin
- 适配性:支持与Illustrious系列模型结合,可将水墨画风融入动漫角色,生成国风或写意风格作品。建议权重设为0.85以下以保留Illustrious的细节优势。
- 参数优化:搭配ChilloutMix等底模时,可通过调整CFG值(1-7范围)控制工笔与写意效果。
- 来源:[某搜索来源3]
-
Anime Lineart / Manga-like LoRA
- 功能:强化线稿表现力,适用于漫画分镜或黑白插画生成。与Illustrious结合可优化角色轮廓清晰度,尤其适合需要后期上色的工作流。
- 来源:[相关社区讨论]
三、硬件优化方案
- 低显存设备适配:若显卡性能不足,可选用Pony系列模型(如Pony Diffusion V6),其基于SDXL优化且与Illustrious共享部分技术框架,在生成效率与身体姿态控制上表现接近。
- 对比建议:Pony对提示词理解更稳定,适合复杂动作描述;Illustrious则在高精度光影和复杂场景中更优。
- 来源:[某对比文章]
四、训练与微调建议
- 数据素材:建议使用高质量动漫数据集(如Danbooru标签分类图集),侧重角色姿态多样性以弥补Illustrious对部分提示词响应不足的问题。
- 工具链:推荐搭配Kohya_SS训练脚本,通过分层微调(如专注优化手部细节)提升模型表现。
以上方案需根据实际需求选择,建议优先测试BespokeIllMix和WAI-NSFW-illustrious-SDXL以体验Illustrious原生优势,再通过LoRA扩展风格。