線性內插(Interpolation)

本文介绍了图像处理中几种常见的插值方法,包括最近邻插值法、双线性插值法及高阶插值等,这些方法用于解决图像进行几何变换时因像素映射造成的灰度值缺失问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

當我們圖像進行幾何轉換時,假使輸出像素映射的地方,不是輸入圖像某個整數像素位置,這時要用整數座標的灰度值進行推斷,這就是插值,這邊介紹幾種插值方式,通常較好的結果也導致較大的計算量。


最近插值法(Nearest Neighbor Interpolation):這是一種最簡單的插值算法,輸出像素的值為輸入圖像離映射點最近的像素值,如下圖假使(x0,y0)為映射點,則讓此點的強度值為(x1,y1)的值,這種算法作幾何轉換時,邊緣通常有較嚴重的鋸齒狀。

Nearest Neighbor Interpolation


雙線性插值法(Bilinear Interpolation):在兩個方向分別進行一次線性插值,輸出像素的值為映射點四周的2×2像素強度加權平均,如下圖我們簡化問題,四周位置分別為(0,0)、(1,0)、(0,1)、(1,1),強度分別為f(0,0)、f(1,0)、f(0,1)、f(1,1),(x,y)映射點強度為f(x,y),映射點到四邊的距離分別為d1、d2、d3、d4、我們依序進行以下三步驟:

  1. 對上端的兩個頂點進行線性插值得到x1的強度f(x1)。 f(x1) = f(0,0) + d1 * (f(1,0) – f(0,0))
  2. 對下端的兩個頂點進行線性插值得到x2的強度f(x2)。 f(x2) = f(0,1) + d1 * (f(1,1) – f(0,1))
  3. 由f(x1)和f(x2)來求得(x,y)的強度f(x,y)。 f(x,y)= f(x1)+ d3 * (f(x1)- f(x2))

我們擴展這個概念,就可得到圖像所有的雙線性插值強度,這概念假設強度在兩個像素之間是線性變化的,顯然是合理的假設,因此在一般的情況之下,雙線性插值都能得到不錯的結果。

Bilinear Interpolation


高階插值: 在一些幾何運算中,雙線性插值的平滑作用會導致細節的退化,這些可以透過高階插值彌補,可能會採用4×4或8×8的鄰域進行加權平均。


转自:http://monkeycoding.com/?p=524


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值