Bert模型实现中文新闻文本分类

        Bert基于Transformer架构是解决自然语言处理的深度学习模型,常使用在文本分类、情感分析、词性标注等场合。

        本文将使用Bert模型对中文文本进行分类,其中训练集数据18W条,验证集数据1W条,包含10个类别的文本数据,数据可以自己从Kaggel上下载。

        

中文新闻标题 类别标签 类别名
锌价难续去年辉煌 0 金融
金科西府 名墅天成 1 房地产
同步A股首秀:港股缩量回调 2 经济
状元心经:考前一周重点是回顾和整理 3 教育
一年网事扫荡10年纷扰开心网李鬼之争和平落幕
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值