Circumsphere

A sphere circumscribed in a given solid. Its radius is called the circumradius. By analogy with the equation of the circumcircle, the equation for the circumsphere of the tetrahedron with polygon vertices for
, ..., 4 is
![]() |
(1)
|
Expanding the determinant,
![]() |
(2)
|
where
![]() |
(3)
|
is the determinant obtained from the matrix
![]() |
(4)
|
by discarding the column (and taking a plus sign) and similarly for
(this time taking the minus sign) and
(again taking the plus sign)
![]() | ![]() | ![]() |
(5)
|
![]() | ![]() | ![]() |
(6)
|
![]() | ![]() | ![]() |
(7)
|
and is given by
![]() |
(8)
|
Completing the square gives
![]() |
(9)
|
which is a sphere of the form
![]() |
(10)
|
with circumcenter
![]() | ![]() | ![]() |
(11)
|
![]() | ![]() | ![]() |
(12)
|
![]() | ![]() | ![]() |
(13)
|
and circumradius
![]() |
(14)
|
