leetcode51. N皇后

n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。

每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

示例:

输入: 4
输出: [
 [".Q..",  // 解法 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // 解法 2
  "Q...",
  "...Q",
  ".Q.."]
]
解释: 4 皇后问题存在两个不同的解法。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/n-queens
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

经典回溯算法

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

class Solution {
  //todo:queue初始值为-1,若queue[i]不为-1,则在(i,queue[i])放置皇后
    int[] queue = null;
    List<List<String>> result =  new ArrayList<List<String>>();
    public List<List<String>> solveNQueens(int n) {
        queue = new int[n];
        Arrays.fill(queue, -1);
        nQueue(0);
        return result;
    }
    public void nQueue(int row) {
        //todo:遍历col
        for (int i = 0; i < queue.length; i++) {
            //todo:if当前位置不被攻击
            if(isAttack(row,i)){
                //todo:放置棋子
                queue[row] = i;
                //todo:if满足row==N
                if(row == queue.length-1){
                    //todo:得出结果

                    print();
                }
                //todo:else nQueue(row+1)
                else
                    nQueue(row+1);
                // todo:回溯,移除棋子row,col
                queue[row] = -1;
            }
        }

    }
      public void print() {
        List<String> temp = new ArrayList<>();
        StringBuffer sb = new StringBuffer();

        for(int i = 0;i<queue.length;i++){
            for (int j = 0; j < queue.length; j++) {
                if(queue[i] == j)
                    sb.append('Q');
                else
                    sb.append('.');
            }
           temp.add(sb.toString());
            sb.setLength(0);
        }
       result.add(temp);
    }
    //todo:若两旗子在相同对角线上则,行号-列号=常数或,行号+列号=常数
    public boolean isAttack(int row, int col) {
        int sum = row + col;
        int difference = row - col;
        if(queue[row] != -1)return false;
        for (int i = 0; i < queue.length; i++) {
            if(queue[i] == col) return false;
            if(queue[i] != -1){
                if(sum == (i+queue[i]) || difference == (i - queue[i])){
                    return false;
                }
            }
        }
        return true;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值