蓝队知识之互联网暴露面整理

蓝队知识之互联网暴露面整理 /

文末附思路图

1

   

什么是互联网暴露面

互联网暴露面是指企业网络环境中的各个节点和组件,在互联网上直接或间接暴露给外部攻击者的部分。

2

   

暴露内容

1.暴露在互联网上的 IP 资产、域名资产等。

2.暴露的资产中存在一部分未知的资产。(重点整理边缘资产)

3.在互联网上可能会泄露的敏感信息,包括但不限:企业邮箱账号,个人邮箱账号,个人身份信息等。

4.主要业务系统的代码泄露在公开的代码平台,甚至暴露了重要数据和用户名及密码以及个人信息,包括。

5.对互联网提供访问的服务器可能开启了高危端口。

6.对互联网提供访问的服务器中会存在未修复高危漏洞风险。

7.对互联网提供访问的服务器有暴露的后台登录页面等。

3

   

互联网暴露面整理工作

在攻防演练前进行整理

3.1

   

互联网 IP 以及域名

  1. 通过 FOFA、鹰图、零零信安等资产测绘工具进行整理(对导出结果进行去重)

  2. 通过 OneForAll、layer 等子域名探测工具

整理目的:根据检查结果,确认无归属域名及其对应的服务器,应用等信息,补充至资产识别表的 DMZ 区资产表中。

3.2

   

端口服务

扫描全端口 1-65534

1.nmap 端口扫描(因扫描速度略慢,适合在时间充足的情况下使用)

2.masscan 端口扫描(扫描速度快,但准确率比 nmap 低)

整理目的:得到开放未知服务,进行指纹识别,并针对高危端口以及不必要端口进行封闭,例如(tomcat 默认端口等等)

3.3

   

应用

整理 Web 应用、APP 小程序、客户端程序等

整理目的:1.对应 Web 指以及后端框架整理;

2.确认 Web 管理页面,并进行合理的调整,比如:限制 ip 管理,更改访问目录;

3.关闭非必要 Web 端口(举例:weblogic 的 7001、5566,tomcat、jboss 的 8080,webshere 的 9080)

4.源代码泄露整理:针对开源框架以及易出现的框架程序合理的部署 WAF,通过扫描工具(例如:御剑、7kbscan、dirsearch)进行源代码泄露扫描。再结合 Github、码云等代码管理平台进行代码搜索。

常见搜索引擎

FOFA(资产搜索)

360quake(资产搜索)

奇安信鹰图(资产搜索)

shodan(资产搜索)

grep.app(50w 个 git 存储库)

GitHub(代码管理平台)

searchcode.com(代码搜索)

crt.sh(证书搜索)

ZoomEye(资产搜索)

敏感端口整理

21/22/69 FTP/TFTp 文件传输协议 允许匿名的上传,下载,爆破和嗅探操作

2049 NFS 服务 配置不当

139 Samba 服务 爆破,未授权的访问,远程代码执行

389 Ldap 目录访问协议 注入,允许匿名访问,弱口令

22 SSH 远程连接 爆破,SSH 隧道及内网代理转发,文件传输

23 Telnet 远程连接 爆破,嗅探,弱口令

3389 RDP 远程桌面连接 Shift 后门(需要 Windows Server 2003 以下的系统),爆破

5900 VNC 弱口令爆破

5632 PyAnywhere 服务 抓密码,代码执行

80/443/8080 常见的 wb 服务端口 web 攻击、爆破、对应服务器版本漏洞

7001/7002 Weblogic 控制台 Java 反序列化、弱口令

8080/8089 Jboss/Resin/Jetty/Jenkins 反序列化、控制台弱口令

9090 Websphere 控制台 Java 反序列化、弱口令

4848 Glassfish 控制台 弱口令

1352 Lotus domino 邮件服务 弱口令、信息泄露、爆破

10000 Webmin-Web 控制面板 弱口令

3.4

   

敏感信息

通过互联网搜索引擎,以及可以用到的手段收集信息

包括但不限于:

1.邮箱

2.敏感文件

3.账号密码

4.员工信息

5.工程资料

6.手机号

推荐:使用搜索引擎语句并配合零零信安进行整理。

4

   

思路图获取方式

关注公众号"知攻善防实验室",后台回复“1109”

关注公众号"知攻善防实验室",后台回复“交流群”获取 技术交流群链接

### 如何进行全面的互联网资产暴露面梳理以增强安全性 #### 定义目标与范围 在进行互联网资产暴露面梳理之前,定义清晰的目标和范围至关重要。这包括确认哪些类型的资产需要被纳入考虑范围内,例如 IP 地址、域名、服务器和服务等。明确这些细节有助于确保后续工作更加聚焦有效[^2]。 #### 数据收集阶段 采用多种技术手段来获取尽可能完整的数据集是必要的。可以利用内部数据库查询已知资产列表作为起点;同时借助外部工具扫描公开可访问的信息源,比如通过端口扫描器检测开放的服务端口,或是使用搜索引擎挖掘潜在泄露的企业敏感资料。对于那些意外出现在公网上的私有资源,则需特别关注并记录下来以便后续处理。 #### 分析与分类整理 一旦完成了初步的数据采集之后,接下来就是对所获得的结果进行深入分析。按照不同的维度(如地理位置分布、所属部门职能划分)对各类资产加以区分,并建立详细的文档档案。特别是要标记出任何未授权而存在于外网环境中的组件——它们往往构成较大的安全隐患点。此外,还应该定期更新维护这份清单,使其始终保持最新状态。 #### 风险评估过程 针对每一个识别出来的对象执行详尽的安全状况审查是非常重要的一步。这里不仅限于考察其本身是否存在漏洞缺陷,还要综合考量该要素在整个IT基础设施体系内的作用及其关联影响程度。例如某些看似无害的小型应用程序接口(API),若与其他核心业务流程紧密相连的话,在遭受入侵后可能会引发连锁反应造成更大损失。因此,必须给予充分重视并对高危项采取预防措施减少可能发生的危害后果[^1]。 #### 制定改进计划 根据上述各项工作的结论制定具体的优化方案。一方面加强现有防护机制的有效性和覆盖面,另一方面积极引入先进的技术和管理理念构建更为坚固可靠的屏障抵御外来威胁。值得注意的是整个过程中应保持透明度并与利益相关方密切沟通合作共同推进项目进展直至最终达成预期效果[^3]。 ```python def assess_assets_risk(asset_list): """ 对给定的一组资产进行风险评估 :param asset_list: 待评估的资产列表 :return: 包含各资产的风险等级报告 """ risk_report = {} for asset in asset_list: # 模拟风险计算逻辑 risk_level = calculate_risk_of_asset(asset) # 将结果存入字典中 risk_report[asset['identifier']] = { 'name': asset.get('name', ''), 'type': asset.get('type', ''), 'riskLevel': risk_level, 'recommendations': suggest_improvements_based_on_risk(risk_level) } return risk_report def calculate_risk_of_asset(asset_info): """模拟函数用于估算单个资产的风险级别""" pass # 实际实现会涉及复杂的算法模型 def suggest_improvements_based_on_risk(level): """根据不同风险水平提供建议改善措施""" suggestions = [] if level >= HIGH_RISK_THRESHOLD: suggestions.append("立即断开连接直到完成彻底检查") elif MEDIUM_RISK_THRESHOLD <= level < HIGH_RISK_THRESHOLD: suggestions.extend([ "实施额外的日志监控", "安排紧急补丁安装" ]) else: suggestions.append("维持现状但增加常规审计频率") return suggestions ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值