HDU - 1465 不容易系列之一 —— 错排问题

41 篇文章 1 订阅

不容易系列之一

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 23073    Accepted Submission(s): 9981


Problem Description
大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了!
做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样。
话虽这样说,我还是要告诉大家,要想失败到一定程度也是不容易的。比如,我高中的时候,就有一个神奇的女生,在英语考试的时候,竟然把40个单项选择题全部做错了!大家都学过概率论,应该知道出现这种情况的概率,所以至今我都觉得这是一件神奇的事情。如果套用一句经典的评语,我们可以这样总结:一个人做错一道选择题并不难,难的是全部做错,一个不对。

不幸的是,这种小概率事件又发生了,而且就在我们身边:
事情是这样的——HDU有个网名叫做8006的男性同学,结交网友无数,最近该同学玩起了浪漫,同时给n个网友每人写了一封信,这都没什么,要命的是,他竟然把所有的信都装错了信封!注意了,是全部装错哟!

现在的问题是:请大家帮可怜的8006同学计算一下,一共有多少种可能的错误方式呢?
 

Input
输入数据包含多个多个测试实例,每个测试实例占用一行,每行包含一个正整数n(1<n<=20),n表示8006的网友的人数。
 

Output
对于每行输入请输出可能的错误方式的数量,每个实例的输出占用一行。
 

Sample Input
  
  
2 3
 

Sample Output
  
  
1 2


题意:给出n个数1-n,问每个数都不在自己原来位置上的排列方式有多少种。


思路:做的时候手动没找到规律,写了一个深搜搜出结果才找到规律(虽然和题解的规律也不一样)。后来搜题解发现这叫错排问题。

递推式 f[n]=(n-1)*(f[n-1]+f[n-2])

#include<stdio.h>
#define LL long long
LL f[25];
void init()
{
    f[0]=0;
    f[1]=0;
    f[2]=1;
    for(int i=3;i<=20;i++)
    {
        f[i]=(i-1)*(f[i-1]+f[i-2]);
    }
}
int main()
{
    int n;
    init();
    while(scanf("%d",&n)!=EOF)
    {
        printf("%lld\n",f[n]);
    }
    return 0;
}
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
#include <stack>
#include <map>
#include <cmath>
#include <vector>
#define max_ 100010
#define inf 0x3f3f3f3f
#define ll long long
using namespace std;

int n;
ll num[30];
int main(int argc, char const *argv[]) {
	num[1]=0;
	num[2]=1;
	int i;
	for(i=3;i<=20;i++)
	{
		num[i]=num[i-1]*i;
		if(i&1)
		{
			num[i]--;
		}
		else
		{
			num[i]++;
		}
	}
	while(cin>>n)
	{
		cout<<num[n]<<endl;
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值