莫比乌斯反演

莫比乌斯反演

 

略微学了一点皮毛,先记录下来以备复习。

反演分为两种形式:

①约数型

对于等式     F\left ( n \right )=\sum_{d|n}^{ }f\left ( d \right ) 

可以得到  f\left ( n \right )=\sum_{d|n}^{ }u\left ( d \right )F\left ( \frac{n}{d}\right )

②倍数型

对于等式  F\left ( n \right )=\sum_{n|d}^{ }f\left ( d \right )

可以得到  f\left ( n \right )=\sum_{n|d}^{ }u\left ( \frac{d}{n} \right )F\left ( d \right )

 

u函数的性质决定了莫比乌斯反演的本质是容斥原理。

一般情况下,我们要求的 f 函数很复杂,不便直接求出,但我们可以构造出一个与其有关的 F 函数,而 F 函数相比来说比较容易求出,这样我们可以通过F函数的反演求出f函数。

 

u函数可以通过线性筛求出

bool vis[max_];
int prime[max_];
int pl=0;
int mu[max_];
void getmu()
{
	mu[1]=1;
	for(int i=2;i<max_;i++)
	{
		if(vis[i]==false)
		{
			prime[++pl]=i;
			mu[i]=-1;
		}
		for(int j=1;j<=pl&&prime[j]*i<max_;j++)
		{
			vis[i*prime[j]]=true;
			if(i%prime[j]==0)
			{
				mu[i*prime[j]]=0;
				break;
			}
			else
			mu[i*prime[j]]=-mu[i];
		}
	}
}

莫比乌斯反演的难点,在于对当前要求的 f 函数,如何构造出适当的 F 函数,不但要满足上式的性质,还要容易求。

入门题基本都是计算有关gcd(x,y)=k的个数,这个构造非常典型,

当1<=x<=n,1<=y<=m时,求gcd(x,y)=1的对数。

设f(d)为满足gcd(x,y)=t的对数,

则可以构造F(d)为满足gcd(x,y)%d=0的对数,那么F(d)=(n/d)*(m/d),可以直接求出,

那么由莫比乌斯反演公式,我们就可以反演出要求的f(d)

具体可以看题目:

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值