置换群与轨道计数

本文介绍了群论的基础概念,包括群的作用、轨道和不动点,重点讨论了置换群和轨道计数。通过Burnside引理和Pólya定理,阐述了如何在组合问题中利用群论进行计数。文中还涉及经典题目如路径计数、环染色等,并探讨了群论在无向图、有根树等结构的计数问题上的高级应用。
摘要由CSDN通过智能技术生成

群论基础

by blutrex

对于集合G 和二元运算∗,若:

  • 封闭性:∀f, g ∈ G,有f ∗ g ∈ G;
  • 结合律:∀f, g, h ∈ G,有(f ∗ g) ∗ h = f ∗ (g ∗ h);
  • 单位元:∃e ∈ G,∀g ∈ G,有g ∗ e = e ∗ g = g;
  • 逆元:∀g ∈ G,∃f ∈ G,使f ∗ g = g ∗ f = e,记作 f=g1 f = g − 1

则称G 对∗ 构成一个群,记作群(G, ∗)。
根据结合律和逆元,可以证明群满足消去律:若f, g, h ∈ G,且
f ∗ h = g ∗ h 或h ∗ f = h ∗ g,则f = g。

注意:群不一定满足交换律;单位元唯一;任意元素的逆元唯
一。

群的作用

对于群(G, ∗)、集合X 和左二元关系φ : G × X → X(将
φ(g, x) 简记为g · x),若:

  • 单位元:e ∈ G 为单位元,∀x ∈ X,有e · x = x;
  • 兼容性:∀f, g ∈ G,∀x ∈ X,有(f ∗ g) · x = f · (g · x)。

则称G 可左作用于集合X。
根据单位元、群逆元和兼容性,可以证明群作用是一个双射,即
若g · x = y,则g 唯一。
类似可定义右作用x · g。

轨道和不动点

定义 xX x ∈ X 在G 的轨道为G 的元素作用于x 得到的所有结果的
集合,即

Gx={ gx|gG} G ⋅ x = { g ⋅ x | g ∈ G }

定义 x,yX x , y ∈ X 等价当且仅当
Gx=Gy G ⋅ x = G ⋅ y

所有轨道的集合为
X/G={ Gx|xX} X / G = { G ⋅ x | x ∈ X }

X上 gG g ∈ G 的不动点的集合为作用后不变的点的集合,即
Xg={ xX|gx=x}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值