思维导图:
5-6置换群与伯恩赛德定理
1. 置换群的定义
- 置换群(Sn):由集合 S 上所有置换组成的群。
- 置换:集合 S 上的元素重新排列。
2. 置换的运算
- 左复合(∘∘):对于置换 π1,π2∈Sn,2π1∘π2 表示先应用 π2 后应用 π1。
- 右复合(⋄⋄):π2⋄π1 表示先应用 π1 后应用 π2。
3. 置换群的群性质
- 封闭性:置换的复合仍然是一个置换。
- 结合律:(π1∘π2)∘π3=π1∘(π2∘π3)。
- 幺元:幺置换(恒等置换),不改变任何元素的排列。
- 逆元:对每个置换 π,存在逆置换π−1。
4. 置换群的子群
- 子群定义:置换群的任何一个子群称为集合 S 上的一个置换群。
- 对称群:特定集合 S 的对称群 Sn 是置换群的一个例子。
5. 伯恩赛德定理
- 目的:计算由置换群诱导的等价类数量。
- 定理内容:置换群 〈G,∘〉 诱导的等价类数目等于置换群中每个置换下不变元的平均数。
- 公式:等价类数目
, 其中 ψ(π) 是置换 π 下的不变元数目。
6. 示例应用
- 例子1:计算特定集合上的对称群和置换群。
- 例子2:使用伯恩赛德定理计算特定条件下的等价类数目。
定义:
定义 5-6.1(置换群的定义):
这个定义涉及置换群,特别是 Sn,它是一个由集合 S 上所有置换构成的集合,其中 n 是集合 S 的元素数量。这个群采用置换的复合作为其运算。
置换的概念:
- 置换 是一种函数或映射,它将集合中的元素重新排列。
- 在 Sn 中,有 n!("n 阶乘")种不同的置换,对应于集合 S 中元素的所有可能排列。
置换群的运算:
- 左复合 (∘∘):如果有两个置换 π1 和 π2,则 π1∘π2 表示先应用 π2 再应用 �1π1。
- 右复合 (⋄⋄):π2⋄π1 表示先应用 π1 再应用 π2。
置换群的性质:
- 置换群是封闭的、有结合律的,存在幺元(恒等置换),并且每个元素(即置换)都有逆元(逆置换)。
- 这使得置换群满足群的所有基本性质,因此它是一个群。
例子:
- 假设有一个集合 S={a,b,c},那么 S3(集合 S 上的对称群)包含所有将 a、b、c 进行重排的置换。
应用和理解:
这个定义是理解更复杂的群论概念的基础,如对称群、交错群和其他类型的群。它为探索如何通过置换来表示和操作集合中的元素提供了基础,并且是研究群作用和群的表示理论等高级概念的起点。通过理解置换群的定义,可以更深入地探索数学中的置换、组合和群论问题。
定义 5-6.2(置换群的子群):
这个定义关注于集合 S 上的置换群的子群。具体来说,它涉及置换群 〈Sn,∘〉 的任何子群,即任何满足群性质(封闭性、结合律、存在幺元和逆元)的 Sn 的子集。
置换群的子群概念:
- 子群:群 G 的一个子集 H,如果 H 自身也是一个群(采用相同的运算),则 H 被称为 G 的子群。
- 在置换群的上下文中,一个子群是由置换群 Sn 中的一些置换组成的,这些置换在复合运算下满足群的所有性质。
特别的置换群 - 对称群:
- 对称群:特定集合 S 的对称群 Sn 是置换群 〈Sn,∘〉 的一个特殊例子,它包括了集合 S 上所有可能的置换。
应用和理解:
- 了解置换群的子群是理解群论中更复杂结构的基础,例如,了解某些特定类型的置换(如偶置换或奇置换)如何构成子群可以深化对群论的理解。
- 对称群的子群在许多数学领域,如代数、组合学和几何中都有重要应用。
结论:
通过理解置换群和其子群的定义,我们可以构建对更广泛的群论概念的基本理解,这对于探索数学中的对称性、群作用、群的表示理论等高级概念至关重要。这些定义是群论学习的基石,为进一步研究提供了必要的背景知识。
定义 5-6.3(由置换群诱导的二元关系):
这个定义介绍了由置换群 〈G,∘〉 在集合 S 上诱导出的特定二元关系。
二元关系的概念:
- 二元关系:集合 S 上的二元关系是 S 中元素对的集合,满足某些特定的条件或属性。
- 在这个上下文中,二元关系是由置换群 G 中的置换所确定的关系。
由置换群诱导的二元关系:
- 置换群诱导的关系:定义为 R={(a,b)∣π(a)=b,π∈G},这里 π 是群 G 中的一个置换,a 和 �b 是集合 S 中的元素。
- 这意味着,如果置换 π 将元素 a 映射到 b,则元素对 (a,b) 属于由 G 诱导的关系 R。
应用和理解:
- 这个定义帮助我们理解置换群如何在更广泛的数学结构上产生影响,特别是在关系和集合的映射方面。
- 通过研究由置换群诱导的关系,我们可以深入了解集合内元素如何通过置换相互关联,这对于理解群作用和置换群在不同数学领域中的应用非常重要。
结论:
通过理解置换群诱导的二元关系的定义,我们可以扩展对群论在更广泛数学领域中应用的理解,特别是在研究群如何影响集合内部结构和元素之间的关系方面。这种理解对于探索群论及其在数学的其他领域中的应用是非常有价值的。
定理:
定理 5-6.1(置换群是群):
集合 Sn 上所有置换的集合,配合置换的左复合运算 ∘∘,构成一个群。
证明过程:
-
封闭性:
- 对于任意两个置换 π1,π2∈Sn,需要证明 2π1∘π2 也在 Sn 中。
- 由置换的定义,π2 将集合 S 的元素映射到 S 中的其他元素,同样 π1 也是如此。
- 因此,π1∘π2 也是 S 上的一个置换。
-
结合律:
- 对于任意三个置换 π1,π2,π3∈Sn,需要证明 (π1∘π2)∘π3=π1∘(π2∘π3)。
- 对任意 ∈S,考虑 (π1∘π2)∘π3(x) 和 π1∘(π2∘π3)(x)。
- 两边都等价于先应用 3π3 到 x,再应用 π2,最后应用 π1。
- 因此,结合律成立。
-
存在幺元:
- 幺元是恒等置换 πe,它将每个元素映射到它自己。
- 对任意 π∈Sn,有 πe∘π=π∘πe=π。
-
存在逆元:
- 对于每个置换 π∈Sn,存在一个逆置换 π−1,使得 π∘π−1=π−1∘π=πe。
- 逆置换 π−1 的作用是撤销 π 的效果。
结论:
由于置换群 〈Sn,∘〉 满足群的四个基本性质(封闭性、结合律、存在幺元和逆元),因此它是一个群。通过这个证明,我们可以看到置换群的基本结构和运算规则,这是理解更高级群论概念的基础。
学到了什么?
数学思想
- 群的基本性质:认识到一个数学结构要成为群,必须满足封闭性、结合律、存在幺元和逆元这四个基本性质。
- 置换的特性:理解置换的概念,即一种将集合中元素重新排列的映射,以及如何通过置换的复合来构造新的置换。
数学思维
- 抽象概念的具体应用:通过置换群的例子,应用抽象的群论概念到具体的数学对象(如置换)上。
- 从特殊到一般:从研究特定的置换群结构来揭示群论中更一般的概念和规律。
数学证明方法
- 构造性证明:通过构造具体的例子(如恒等置换和逆置换)来证明群的基本性质。
- 使用反证法:在某些情况下,如证明置换群的封闭性,可能需要使用反证法来展示非置换元素不可能出现在置换群中。
数学证明处理技巧
- 细节的关注:在处理置换及其复合时,对每个步骤的细节保持关注,确保正确理解置换如何操作集合中的元素。
- 逻辑的严密性:确保证明过程中的每一步都逻辑上连贯和严密,特别是在应用群的基本性质时。
- 简化复杂问题:将复杂的群理论问题(如置换群的群性质)简化为基本的数学操作和概念,使得证明更清晰易懂。
通过这个证明,我们不仅能够更好地理解置换群的基本性质和结构,还能学习到如何使用群论的基本概念来解决更复杂的数学问题。这种理解对于深入研究群论及其在数学的其他领域中的应用是非常有帮助的。
定理 5-6.2(置换群诱导的二元关系是等价关系):
由置换群 〈G,∘〉 诱导的集合 S 上的二元关系 R 是一个等价关系。
证明过程:
-
定义诱导的二元关系:
- R={(a,b)∣π(a)=b,π∈G}。
- 这意味着,如果置换 π 将元素 a 映射到 b,则元素对 (a,b) 属于关系 R。
-
证明等价关系的三个性质:
-
反身性:
- 对于 S 中的任何元素 x,由于恒等置换 πe∈G,有 πe(x)=x。
- 因此,(x,x)∈R。
-
对称性:
- 假设 (a,b)∈R,则存在 π∈G 使得 π(a)=b。
- 由于 π 有逆置换 π−1∈G,且 π−1(b)=a。
- 因此,(b,a)∈R。
-
传递性:
- 假设 (a,b)∈R 和 (b,c)∈R。
- 存在 π1,π2∈G 使得 π1(a)=b 和 π2(b)=c。
- 考虑复合置换 π2∘π1(在 G 中),有 (π2∘π1)(a)=π2(π1(a))=π2(b)=c。
- 因此,(a,c)∈R。
-
结论:
由于置换群 〈G,∘〉 诱导的关系 R 满足反身性、对称性和传递性,因此 R 是一个等价关系。通过这个证明,我们可以看到置换群如何在集合 S 上产生结构化的关系,并且这种关系具有等价关系的基本性质。这种理解对于深入研究群论及其在数学的其他领域中的应用是非常有帮助的。
学到了什么?
数学概念的应用
- 等价关系的基本性质:反身性、对称性和传递性是定义等价关系的三个基本属性。这个证明展示了如何逐一检验这些性质。
- 置换群的作用:理解置换群如何在集合上作用,并通过这种作用建立元素间的关系。
数学逻辑与推理
- 从特定实例到一般性质:通过考察特定的置换和它们的逆,证明了整个群诱导的关系具有对称性和传递性,从而将具体情况推广到一般规律。
- 逆元素的应用:在证明对称性时,使用置换的逆元素是关键步骤,展示了逆元素在群理论中的重要性。
抽象思维
- 理解抽象概念:通过置换群诱导的关系和等价类的概念,我们学习了如何将抽象的群论概念应用到具体的数学情境中。
- 群与结构:理解群如何为集合内元素之间的关系提供一个有结构的框架。
数学证明技巧
- 构造性证明:使用构造方法来证明存在性,例如,展示特定置换和它们的逆来证明对称性和传递性。
- 反证法的使用:虽然这个证明没有直接使用反证法,但它是群论中常见的证明方法之一,特别是在处理复杂的群结构时。
结论
通过这个证明,我们不仅加深了对群论的理解,尤其是置换群和等价关系在数学中的应用,还学习到了如何使用数学逻辑和证明技巧来处理抽象概念。这种理解对于深入研究群论及其在数学的其他领域中的应用是非常有价值的。
定理 5-6.3(伯恩赛德定理):
设 G 是集合 S 上的置换群。由 G 诱导的 S 上的等价关系产生的等价类(轨道)的数目等于 G 中所有置换的不变元个数的平均值。
证明过程:
-
轨道与不变元:
- 轨道:给定 G 中的元素 g 和 S 中的元素 s,轨道是 g 作用在 s 上产生的所有结果的集合。
- 不变元:对于 G 中的置换 g,不变元是在 g 作用下保持不变的 S 中的元素。
-
计算不变元的总数:
- 对于每个置换 g∈G,计算不变元的个数 ψ(g)。
- 所有置换的不变元个数之和是 ∑g∈Gψ(g)。
-
计算轨道的数量:
- 设 S 上的每个轨道包含 k 个元素,总共有 n 个轨道。
- 则 G 中每个置换 g 作用在 S 上,每个轨道提供了 ψ(g) 个不变元。
- 因此,总的不变元个数等于轨道数乘以 G 的大小,即 n×∣G∣。
-
伯恩赛德公式:
- 轨道数 n 可以通过比较两种方法计算的不变元总数得出。
- n×∣G∣=∑g∈Gψ(g)。
- 因此,轨道数 n=∣G∣1∑g∈Gψ(g)。
结论:
伯恩赛德定理通过将置换群中每个置换的不变元个数相加并取平均,提供了一种计算等价类(轨道)数量的方法。这个定理在组合数学中特别有用,因为它简化了计算某些类型的组合结构的数量的问题。通过这个证明,我们可以看到群论在解决计数问题中的应用,以及如何将群的作用联系到具体的数学对象上。
总结:
重点
- 置换群的概念:理解置换群是由集合上所有可能的置换构成的群,这些置换是集合元素的排列。
- 子群的定义和性质:明白置换群的子群是如何定义的,以及它们的基本性质。
- 等价关系的理解:认识到由置换群诱导的二元关系是等价关系,包括其反身性、对称性和传递性。
- 伯恩赛德定理:掌握伯恩赛德定理的内容和应用,即如何用群的作用来计算等价类(轨道)的数量。
难点
- 伯恩赛德定理的应用:理解和应用伯恩赛德定理可能是较难的部分,尤其是在实际问题中正确计算不变元的数量。
- 置换群的性质理解:对于初学者来说,理解群的性质如封闭性、结合律、幺元和逆元在置换群上的应用可能具有挑战性。
易错点
- 混淆不同概念:在群论中,易于混淆不同的概念,如置换群、子群和对称群。
- 误解等价关系:可能会错误地理解由置换群诱导的二元关系不是等价关系。
- 计算错误:在应用伯恩赛德定理时,计算错误是一个常见的问题,尤其是在确定一个置换下不变元素的数量。
- 置换群的操作理解:对于如何置换操作集合上的元素,尤其是在考虑复合置换时,可能会产生混淆。
总的来说,这一节的内容涵盖了群论中关于置换群的基本概念和定理,对于理解和应用群论的基础知识至关重要。掌握这些内容是理解更高级群论概念的基础,也是解决相关数学问题的关键。